Mendorong Pertumbuhan Bisnis: Memanfaatkan Pengambilan Keputusan Berbasis Data untuk Optimalisasi Sumber Daya dan Inovasi dalam Manufaktur Agil
DOI:
https://doi.org/10.37385/msej.v4i6.3805Keywords:
Pengambilan Keputusan Berbasis Data, Manufaktur Gesit, Pemanfaatan Sumber Daya, Inovasi, Efisiensi OperasionalAbstract
Abstrak ini bertujuan untuk menyoroti pentingnya Pengambilan Keputusan Berbasis Data (Data-Driven Decision Making, DDDM) dalam konteks strategi manufaktur yang gesit di Indonesia. Pendekatan kualitatif diadopsi, dengan menggunakan tinjauan literatur yang komprehensif untuk mengumpulkan data yang relevan. Jurnal akademis, artikel penelitian, laporan industri, dan studi kasus terkait tentang DDDM dalam strategi agile manufacturing dianalisis. Analisis literatur mengungkapkan bahwa penerapan DDDM dalam agile manufacturing dapat meningkatkan efisiensi operasional, kualitas produk, dan manajemen rantai pasokan. DDDM juga memungkinkan respon yang cepat terhadap perubahan permintaan pasar dan memfasilitasi pengembangan produk dan layanan inovatif yang disesuaikan dengan kebutuhan pelanggan. Mengintegrasikan DDDM dalam strategi agile manufacturing memiliki implikasi yang signifikan bagi bisnis di Indonesia. Hal ini memberdayakan perusahaan untuk mencapai keunggulan kompetitif dengan mengoptimalkan sumber daya, meminimalkan risiko, dan dengan cepat beradaptasi dengan perubahan pasar. Selain itu, DDDM menumbuhkan budaya inovasi yang berkelanjutan, menghasilkan penawaran yang berpusat pada pelanggan dan mendorong pertumbuhan bisnis jangka panjang. Memahami dan menerapkan DDDM sangat penting bagi perusahaan yang ingin tetap kompetitif dan berkelanjutan di pasar yang dinamis.
References
Alipour-Vaezi, M., … R. T.-M.-J. of I., & 2022, undefined. (2021). Scheduling the COVID-19 vaccine distribution based on data-driven decision-making methods. Jiems.Icms.Ac.Ir, 8(2), 196–206. https://doi.org/10.22116/JIEMS.2022.138130
Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766
Baardman, L., Cristian, R., Perakis, G., Singhvi, D., Skali Lami, O., & Thayaparan, L. (2023). The role of optimization in some recent advances in data-driven decision-making. Mathematical Programming, 200(1), 1–35. https://doi.org/10.1007/s10107-022-01874-9
Botvin, M., Hershkovitz, A., & Forkosh-Baruch, A. (2023). Data-driven decision-making in emergency remote teaching. Education and Information Technologies, 28(1), 489–506. https://doi.org/10.1007/s10639-022-11176-4
Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics (Switzerland), 10(7). https://doi.org/10.3390/electronics10070828
Dash, B., & Ansari, M. F. (2022). Self-service analytics for data-driven decision making during COVID-19 pandemic: An organization’s best defense. Academia Letters, March. https://doi.org/10.20935/al4978
Farjana, M., Fahad, A. B., Alam, S. E., & Islam, M. M. (2023). An IoT- and Cloud-Based E-Waste Management System for Resource Reclamation with a Data-Driven. IoT, 4, 202–220.
Geng, X., & Xie, L. (2019a). Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization. Annual Reviews in Control, 47, 341–363. https://doi.org/10.1016/j.arcontrol.2019.05.005
Geng, X., & Xie, L. (2019b). Data-driven Decision Making with Probabilistic Guarantees (Part 1): A Schematic Overview of Chance-constrained Optimization. College Station, Part I. http://arxiv.org/abs/1903.10621
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hamoud, A. K., Hussein, M. K., Alhilfi, Z., & Sabr, R. H. (2021). Implementing data-driven decision support system based on independent educational data mart. International Journal of Electrical and Computer Engineering, 11(6), 5301–5314. https://doi.org/10.11591/ijece.v11i6.pp5301-5314
Hemalatha, C., Sankaranarayanasamy, K., & Durairaaj, N. (2021). Lean and agile manufacturing for work-in-process (WIP) control. Materials Today: Proceedings, 46, 10334–10338. https://doi.org/10.1016/j.matpr.2020.12.473
Hong, W., Wang, B., Yao, M., Callaway, D., Dale, L., & Huang, C. (2022). Data-Driven Power System Optimal Decision Making Strategy under Wildfire Events. Proceedings of the Annual Hawaii International Conference on System Sciences, 2022-January, 3570–3579. https://doi.org/10.24251/hicss.2022.436
Khalfallah, M., & Lakhal, L. (2021). The impact of lean manufacturing practices on operational and financial performance: the mediating role of agile manufacturing. International Journal of Quality and Reliability Management, 38(1), 147–168. https://doi.org/10.1108/IJQRM-07-2019-0244
Kumar, R., Singh, K., & Jain, S. K. (2019). Development of a framework for agile manufacturing. World Journal of Science, Technology and Sustainable Development, 16(4), 161–169. https://doi.org/10.1108/WJSTSD-05-2019-0022
Kumar, R., Singh, K., & Jain, S. K. (2020). Agile manufacturing: a literature review and Pareto analysis. International Journal of Quality and Reliability Management, 37(2), 207–222. https://doi.org/10.1108/IJQRM-12-2018-0349
Kumar, R., Singh, K., & Jain, S. K. (2021). An empirical investigation and prioritization of barriers toward implementation of agile manufacturing in the manufacturing industry. TQM Journal, 33(1), 183–203. https://doi.org/10.1108/TQM-04-2020-0073
Kuppler, M., Kern, C., Bach, R. L., & Kreuter, F. (2022). From fair predictions to just decisions? Conceptualizing algorithmic fairness and distributive justice in the context of data-driven decision-making. Frontiers in Sociology, 7. https://doi.org/10.3389/fsoc.2022.883999
Little, M., Cohen-Vogel, L., Sadler, J., & Merrill, B. (2019). education policy analysis archives A peer-reviewed, independent, open access, multilingual journal Data-Driven Decision Making in Early Education: Evidence From North Carolina’s Pre-K Program. EPAA AAPE, 1–27. http://epaa.asu.edu/ojs/http://dx.doi.org/10.14507/epaa.27.4198
Liu, Y., Zhang, D., & Gooi, H. B. (2021). Data-driven decision-making strategies for electricity retailers: A deep reinforcement learning approach. CSEE Journal of Power and Energy Systems, 7(2), 358–367. https://doi.org/10.17775/CSEEJPES.2019.02510
McElheran, E., & Brynjolfsson, K. (2019). Data in action:Making, data-driven decisions, predictive analytics in US manufacturing. SSRN, 1–49. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3422397
Pagan, S., Magner, K., & Thibedeau, C. (2019). Supporting Data-Driven Decision Making in a Canadian School District. International Journal for Digital Society, 10(3), 1510–1515. https://doi.org/10.20533/ijds.2040.2570.2019.0187
Qamar, A., Hall, M. A., Chicksand, D., & Collinson, S. (2020). Quality and flexibility performance trade-offs between lean and agile manufacturing firms in the automotive industry. Production Planning and Control, 31(9), 723–738. https://doi.org/10.1080/09537287.2019.1681534
Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2(5), 1–22. https://doi.org/10.1007/s42979-021-00765-8
Shahat Osman, A. M., & Elragal, A. (2021). Smart cities and big data analytics: A data-driven decision-making use case. Smart Cities, 4(1), 286–313. https://doi.org/10.3390/smartcities4010018
Sindhwani, R., Mittal, V. K., Singh, P. L., Aggarwal, A., & Gautam, N. (2019). Modelling and analysis of barriers affecting the implementation of lean green agile manufacturing system (LGAMS). Benchmarking, 26(2), 498–529. https://doi.org/10.1108/BIJ-09-2017-0245
Sugiyono. (2019). Metodologi Penelitian.
Syundyukov, E., Mednis, M., Zaharenko, L., Pildegovica, E., Danovska, I., Kistkins, S., Seidmann, A., Benis, A., Pirags, V., & Tzivian, L. (2021). Data-driven decision making and proactive citizen–scientist communication: A cross-sectional study on covid-19 vaccination adherence. Vaccines, 9(12), 1–17. https://doi.org/10.3390/vaccines9121384
Villeneuve, A., & Bouchamma, Y. (2023). Data-driven decision making using local multi-source data: Analysis of a teacher-researcher’s professional practice. Teaching and Teacher Education, 132. https://doi.org/10.1016/j.tate.2023.104198