IoT Enabled Real Time Load Height Monitoring and Control System Using PLC and HMI for Smart Industrial

Authors

  • Dwiana Hendrawati Politeknik Negeri Semarang
  • Ermanu Azizul Hakim Universitas Muhammadiyah Malang
  • Brainvendra Widi Dionova Universitas Global Jakarta
  • Ahmad Kholik Sulistyo Politeknik Negeri Semarang
  • Muhammad Irsyad Abdullah Management and Sciences University, Shah Alam

DOI:

https://doi.org/10.37385/jaets.v6i2.7044

Keywords:

Internet of Things, Real Time Monitoring, Load Height Control, Programmable Logic Controller, Industrial Automation

Abstract

This study develops a laboratory-scale prototype of an IoT-enabled, real-time load height monitoring and control system that integrates Programmable Logic Controllers (PLCs), Human–Machine Interfaces (HMIs), and cloud-based MQTT communication. Developed and validated under controlled conditions, the prototype consistently demonstrates sub-2-second latency (0.66–1.58 seconds) across varying network speeds, confirming its technical feasibility for future industrial applications. Proximity sensors and PLCs enable precise load height measurement, while the Haiwell C7S HMI provides real-time visualization and multi-platform control via web and mobile interfaces. Experimental results highlight the prototype’s robustness, scalability, and alignment with Industry 4.0 frameworks, offering a foundational architecture for subsequent industrial deployment. This work bridges the gap between theoretical Cyber-Physical Systems (CPS) principles and practical implementation, emphasizing adaptability and low-latency performance for smart manufacturing ecosystems.

Downloads

Download data is not yet available.

References

Alice, N. (2025). Industrial Monitoring System with Real-timeAlerts and Automated Protection Mechanisms. International Journal of Engineering and Manufacturing, 15(2), 56–67. https://doi.org/10.5815/ijem.2025.02.05

Babayigit, B., & Abubaker, M. (2024). Industrial Internet of Things: A Review of Improvements Over Traditional SCADA Systems for Industrial Automation. IEEE Systems Journal, 18(1), 120–133. https://doi.org/10.1109/JSYST.2023.3270620

Bakshi, S., Khairmode, G., Varkhede, N., & Ayane, S. (2019). MONITORING AND CONTROL OF PLC BASED AUTOMATION SYSTEM PARAMETERS USING IoT. Nternational Research Journal of Engineering and Technology, 6(03), 650–652. https://doi.org/10.17485/ijst/2015/v8i19/76698

Barton, M., Budjac, R., Tanuska, P., Sladek, I., & Nemeth, M. (2024). Advancing Small and Medium-Sized Enterprise Manufacturing: Framework for IoT-Based Data Collection in Industry 4.0 Concept. Electronics (Switzerland), 13(13). https://doi.org/10.3390/electronics13132485

Caiza, G., & Sanz, R. (2024). An Immersive Digital Twin Applied to a Manufacturing Execution System for the Monitoring and Control of Industry 4.0 Processes. Applied Sciences (Switzerland), 14(10). https://doi.org/10.3390/app14104125

Chen, C.-Y., Wu, S.-H., Huang, B.-W., Huang, C.-H., & Yang, C.-F. (2024). Web-based Internet of Things on environmental and lighting control and monitoring system using node-RED, MQTT and Modbus communications within embedded Linux platform. Internet of Things, 27, 101305. https://doi.org/10.1016/j.iot.2024.101305

Dai, J., Liu, D., Wen, L., & Long, X. (2016). Research on power coefficient of wind turbines based on SCADA data. Renewable Energy, 86, 206–215. https://doi.org/10.1016/j.renene.2015.08.023

Dhingra, S., Madda, R. B., Gandomi, A. H., Patan, R., & Daneshmand, M. (2019). Internet of things mobile-air pollution monitoring system (IoT-Mobair). IEEE Internet of Things Journal, 6(3), 5577–5584. https://doi.org/10.1109/JIOT.2019.2903821

Di Capaci, R. B., & Scali, C. (2021). A cloud-based monitoring system for performance assessment of industrial plants. Industrial and Engineering Chemistry Research, 59(6), 2341–2352. https://doi.org/10.1021/acs.iecr.9b06638

Dionova, B. W., Hendrawati, D., Abdulrazaq, M. N., Vresdian, D. J., Hapsari, A. A., Abdullah, M. I., & Pratama, L. P. (2023). Design and Simulation of Environment Indoor Air Quality Monitoring and Controlling System using IoT Technology. 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), 494–499. https://doi.org/10.1109/ISITIA59021.2023.10221098

Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems, 78, 659–676. https://doi.org/10.1016/j.future.2017.04.036

Farahani, B., & Monsefi, A. K. (2023). Smart and collaborative industrial IoT: A federated learning and data space approach. Digital Communications and Networks, 9(2), 436–447. https://doi.org/10.1016/j.dcan.2023.01.022

Folgado, F. J., Calderón, D., González, I., & Calderón, A. J. (2024). Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends. In Electronics (Switzerland) (Vol. 13, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics13040782

Hendrawati, D., Kurnianingsih, Brainvendra Widi Dionova, Muhammad Irsyad Abdullah, & Dita Anies Munawwaroh. (2025). Thermal Comfort Quality Monitoring and Controlling using Fuzzy Inference System Based on IoT Technology. International Journal on Advanced Science, Engineering and Information Technology, 15(1), 96–102. https://doi.org/10.18517/ijaseit.15.1.20334

Hirman, M., Benesova, A., Sima, K., Steiner, F., & Tupa, J. (2020). Design, Fabrication and Risk Assessment of IoT Unit for Products Manufactured in Industry 4.0 Factory. Procedia Manufacturing, 51, 1178–1183. https://doi.org/10.1016/j.promfg.2020.10.165

Ionescu, D., Filipescu, A., Simion, G., & Filipescu, A. (2025). Internet of Things-Cloud Control of a Robotic Cell Based on Inverse Kinematics, Hardware-in-the-Loop, Digital Twin, and Industry 4.0/5.0. Sensors, 25(6), 1821. https://doi.org/10.3390/s25061821

Islam, J., Habiba, U., Kabir, H., Martuza, K. G., Akter, F., Hafiz, F., Abu, M., Haque, S., Hoq, M., & Chowdhury, A. M. (2018). Design and Development of Microcontroller Based Wireless Humidity Monitor. IOSR Journal of Electrical and Electronics Engineering, 13(2), 41–46. https://doi.org/10.9790/1676-1302034146

Kodali, R. K., & Mahesh, K. S. (2016a). A low cost implementation of MQTT using ESP8266. Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016, 404–408. https://doi.org/10.1109/IC3I.2016.7917998

Kodali, R. K., & Mahesh, K. S. (2016b). Low cost ambient monitoring using ESP8266. Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016, 779–782. https://doi.org/10.1109/IC3I.2016.7918788

Langmann, R., & Stiller, M. (2019). The PLC as a Smart Service in Industry 4.0 Production Systems. Applied Sciences, 9(18), 3815. https://doi.org/10.3390/app9183815

Lyu, X. (2024). Intelligent warehousing performance management based on Internet of Things and automation technology in the context of green manufacturing. Thermal Science and Engineering Progress, 53, 102761. https://doi.org/10.1016/j.tsep.2024.102761

Mahbub, M., & Shubair, R. M. (2023). Contemporary advances in multi-access edge computing: A survey of fundamentals, architecture, technologies, deployment cases, security, challenges, and directions. Journal of Network and Computer Applications, 219, 103726. https://doi.org/10.1016/j.jnca.2023.103726

Mardonova, M., & Choi, Y. (2018). Review of wearable device technology and its applications to the mining industry. Energies, 11(3). https://doi.org/10.3390/en11030547

Matana, G., Tadeu Simon, A., Tasé Velázquez, D. R., Hernández Mastrapa, L., & Luís Helleno, A. (2023). Cyber-Physical Systems as Key Element to Industry 4.0: Characteristics, Applications and Related Technologies. Engineering Management Journal, 35(4), 377–404. https://doi.org/10.1080/10429247.2022.2140002

Mellado, J., & Núñez, F. (2022). Design of an IoT-PLC: A containerized programmable logical controller for the industry 4.0. Journal of Industrial Information Integration, 25, 100250. https://doi.org/10.1016/j.jii.2021.100250

Molka-Danielsen, J., Engelseth, P., & Wang, H. (2018). Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base. Journal of Industrial Information Integration, 10, 20–28. https://doi.org/10.1016/j.jii.2018.02.001

Mutua, E. (2024). Cyber-Physical Systems and Their Role in Industry 4.0. Journal of Technology and Systems, 6(5), 57–69. https://doi.org/10.47941/jts.2149

Oks, S. J., Jalowski, M., Lechner, M., Mirschberger, S., Merklein, M., Vogel-Heuser, B., & Möslein, K. M. (2022). Cyber-Physical Systems in the Context of Industry 4.0: A Review, Categorization and Outlook. Information Systems Frontiers. https://doi.org/10.1007/s10796-022-10252-x

Olusanya, O. O., Jimoh, R. G., Misra, S., & Awotunde, J. B. (2024). A neuro-fuzzy security risk assessment system for software development life cycle. Heliyon, 10(13), e33495. https://doi.org/10.1016/j.heliyon.2024.e33495

P. Senna, P., Barros, A. C., Bonnin Roca, J., & Azevedo, A. (2023). Development of a digital maturity model for Industry 4.0 based on the technology-organization-environment framework. Computers & Industrial Engineering, 185, 109645. https://doi.org/10.1016/j.cie.2023.109645

Presciuttini, A., Cantini, A., Costa, F., & Portioli-Staudacher, A. (2024). Machine learning applications on IoT data in manufacturing operations and their interpretability implications: A systematic literature review. Journal of Manufacturing Systems, 74, 477–486. https://doi.org/10.1016/j.jmsy.2024.04.012

Presciuttini, A., & Portioli-Staudacher, A. (2024). Applications of IoT and Advanced Analytics for manufacturing operations: a systematic literature review. Procedia Computer Science, 232, 327–336. https://doi.org/10.1016/j.procs.2024.01.032

Prunet, T., Absi, N., Borodin, V., & Cattaruzza, D. (2024a). Optimization of human-aware logistics and manufacturing systems: A comprehensive review of modeling approaches and applications. EURO Journal on Transportation and Logistics, 13, 100136. https://doi.org/10.1016/j.ejtl.2024.100136

Prunet, T., Absi, N., Borodin, V., & Cattaruzza, D. (2024b). Optimization of human-aware logistics and manufacturing systems: A survey on the Human-Aware Models. EURO Journal on Transportation and Logistics, 13, 100137. https://doi.org/10.1016/j.ejtl.2024.100137

Raza, A., Jingzhao, L., Ghadi, Y., Adnan, M., & Ali, M. (2024). Smart home energy management systems: Research challenges and survey. Alexandria Engineering Journal, 92, 117–170. https://doi.org/10.1016/j.aej.2024.02.033

Sharma, R. (2024). Enhancing Industrial Automation and Safety Through Real-Time Monitoring and Control Systems. International Journal on Smart & Sustainable Intelligent Computing, 1(2), 1–20. https://doi.org/10.63503/j.ijssic.2024.30

Shukla, A., Chaturvedi, S., & Simmhan, Y. (2017). A Review on Internet of Things, Internet of Everything and Internet of Nano Things. International Journal of Computer Applications (0975 8887), 113(1), 1–7. https://doi.org/10.5120/19787-1571

Siddique, W. A. (2020). Controlling and Monitoring of Industrial Parameters Through Cloud Computing and HMI Using OPC Data Hub Software. Indian Journal of Science and Technology, 13(2), 114–126. https://doi.org/10.17485/ijst/2020/v13i02/148768

Syreyshchikova, N. V., Pimenov, D. Yu., Mikolajczyk, T., & Moldovan, L. (2020). Automation of Production Activities of an Industrial Enterprise based on the ERP System. Procedia Manufacturing, 46, 525–532. https://doi.org/10.1016/j.promfg.2020.03.075

Tabim, V. M., Ayala, N. F., Marodin, G. A., Benitez, G. B., & Frank, A. G. (2024). Implementing Manufacturing Execution Systems (MES) for Industry 4.0: Overcoming buyer-provider information asymmetries through knowledge sharing dynamics. Computers & Industrial Engineering, 196, 110483. https://doi.org/10.1016/j.cie.2024.110483

Wan, Z., Song, Y., & Cao, Z. (2019). Environment dynamic monitoring and remote control of greenhouse with ESP8266 NodeMCU. Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019, Itnec, 377–382. https://doi.org/10.1109/ITNEC.2019.8729519

Wang, L.-C., Lan, K.-M., & Fan, K.-C. (2024). Development of a cloud intelligent machine monitoring and control system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238(9), 1259–1269. https://doi.org/10.1177/09544054231200543

Yordanova, S., Gueorguiev, B., & Slavov, M. (2020). Design and industrial implementation of fuzzy logic control of level in soda production. Engineering Science and Technology, an International Journal, 23(3), 691–699. https://doi.org/10.1016/j.jestch.2019.08.005

Downloads

Published

2025-06-08

How to Cite

Hendrawati, D., Hakim, E. A., Dionova, B. W., Sulistyo, A. K., & Abdullah, M. I. (2025). IoT Enabled Real Time Load Height Monitoring and Control System Using PLC and HMI for Smart Industrial . Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1085–1100. https://doi.org/10.37385/jaets.v6i2.7044