Determination of Covid-19 Pulmonary Infection Rate From X-Ray Images Using U-Net Model

Authors

  • Mohammed Al-Tamimi Computer Science Department - College of Science - University of Baghdad
  • Hadeel Jabar Computer Science Department - College of Science - University of Baghdad, Baghdad, Iraq
  • Husam Ali Abdulmohsin Computer Science Department - College of Science - University of Baghdad, Baghdad, Iraq
  • Farah khiled AL-Jibory Ministry of Education, Karkh First Directorate of Education, Baghdad, Iraq

DOI:

https://doi.org/10.37385/jaets.v6i2.6661

Keywords:

COVID-19, Diagnosis, Severity, Data, Squeeze Net model

Abstract

Global health has suffered by millions of COVID-19 infections and fatalities. Pneumonia and ARDS are major consequences of this viral infection. Patient treatment and resource allocation depend on accurate lung infection rates. Reverse transcription polymerase chain reaction (RT-PCR) is highly specific but lacks sensitivity, especially in early infection. Thus, imaging, particularly chest X-rays, is crucial for detecting and monitoring COVID-19-related pulmonary problems. Among various image processing techniques, deep learning methods, especially U-net models, have shown promising results in segmenting and analyzing X-ray images to determine the extent of lung infection. This article explores the importance of imaging techniques in diagnosing COVID-19 lung infection, provides an overview of the U-Net model in medical imaging, and describes in detail the method of using this complex model to determine infection rates from radiographs. This study discusses the diagnosis of coronavirus infection, i.e. whether a person is infected or not, and determines the infection rate (severity) that mean the percentage of virus in the lungs was calculated based on a global radiograph (X-ray) dataset to study the infection, infection rate, and diagnosis by specialists using a pre-trained model (U-Net model). The results obtained were 97% accurate in diagnosing whether a patient was infected with the virus or not.

Downloads

Download data is not yet available.

References

Aiadi, O., Khaldi, B., & Saadeddine, C. (2023). MDFNet: an unsupervised lightweight network for ear print recognition. Journal of Ambient Intelligence and Humanized Computing, 14(10), 13773-13786.

Al-Khafaji, R. S., & Al-Tamimi, M. S. (2022). Vein biometric recognition methods and systems: A review. Advances in Science and Technology. Research Journal, 16(1), 36-46.

Al-Tamimi, M. S., & AL-Khafaji, R. S. (2022). Finger vein recognition based on PCA and fusion convolutional neural network. International Journal of Nonlinear Analysis and Applications, 13(1), 3667-3681.

Al-Tamimi, M. S. H., & Sulong, G. (2014). TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE. Journal of Theoretical & Applied Information Technology, 62(2).

Al Jibory, F. K., Mohammed, O. A., & Al Tamimi, M. S. H. (2022). Age estimation utilizing deep learning Convolutional Neural Network. International Journal on Technical and Physical Problems of Engineering, 14(4), 219-24.

AL-Jibory, F. K., Younis, M. A., & Al-Tamimi, M. S. (2022). Preparing of ECG Dataset for Biometric ID Identification with Creative Techniques. TEM Journal, 11(4), 1500.

Alia, A. S., Al-Tamimib, M. S. H., & Ahmed, A. (2020). Secure image steganography through multilevel security. Image, 11(1).

Ariza Cervera, I., Barbancho-Pérez, A. M., Tardón-García, L. J., & Barbancho-Pérez, I. (2023). Energy-based features and bi-LSTM neural network for EEG-based music and voice classification.

Ashraf, A. H., Imran, M., Qahtani, A. M., Alsufyani, A., Almutiry, O., Mahmood, A., ... & Habib, M. (2022). Weapons detection for security and video surveillance using cnn and YOLO-v5s. CMC-Comput. Mater. Contin, 70(4), 2761-2775.

Chakraborty, S. (2022). APPLICATION OF DEEP LEARNING FOR MEDICAL SCIENCES AND EPIDEMIOLOGY DATA ANALYSIS AND DIAGNOSTIC MODELING.

Chen, Y., Jiang, G., Li, Y., Tang, Y., Xu, Y., Ding, S., ... & Lu, Y. (2020). A survey on artificial intelligence in chest imaging of COVID-19. BIO Integration, 1(3), 137.

Gayathri, J. L., Abraham, B., Sujarani, M. S., & Ramachandran, S. (2023). A novel CNN framework for the detection of COVID-19 using manta ray optimization and KNN classifier in LUS images. International Journal of Intelligent Systems and Applications in Engineering, 11(2), 55-63.

Gneiting, T., & Resin, J. (2023). Regression diagnostics meets forecast evaluation: Conditional calibration, reliability diagrams, and coefficient of determination. Electronic Journal of Statistics, 17(2), 3226-3286.

Guo, Y., Chen, S., Li, X., Cunha, M., Jayavelu, S., Cammarano, D., & Fu, Y. (2022). Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote sensing, 14(6), 1337.

Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-label confusion matrix. Ieee Access, 10, 19083-19095.

Humphrey, A., Kuberski, W., Bialek, J., Perrakis, N., Cools, W., Nuyttens, N., ... & Cunha, P. A. C. (2022). Machine-learning classification of astronomical sources: estimating F1-score in the absence of ground truth. Monthly Notices of the Royal Astronomical Society: Letters, 517(1), L116-L120.

Jiang, X., Gao, T., Zhu, Z., & Zhao, Y. (2021). Real-time face mask detection method based on YOLOv3. Electronics, 10(7), 837.

Jiang, Z., Salcudean, S. E., & Navab, N. (2023). Robotic ultrasound imaging: State-of-the-art and future perspectives. Medical image analysis, 89, 102878.

Kabir, H. D., Abdar, M., Khosravi, A., Jalali, S. M. J., Atiya, A. F., Nahavandi, S., & Srinivasan, D. (2022). Spinalnet: Deep neural network with gradual input. IEEE Transactions on Artificial Intelligence, 4(5), 1165-1177.

Kashyap, G. S., Sohlot, J., Siddiqui, A., Siddiqui, R., Malik, K., Wazir, S., & Brownlee, A. E. (2024). Detection of a facemask in realtime using deep learning methods: Prevention of COVID-19. In Research Advances in Network Technologies (pp. 224-240). CRC Press.

Khalifa, N. E., Loey, M., & Mirjalili, S. (2022). A comprehensive survey of recent trends in deep learning for digital images augmentation. Artificial Intelligence Review, 55(3), 2351-2377.

Kovács, A., Palásti, P., Veréb, D., Bozsik, B., Palkó, A., & Kincses, Z. T. (2021). The sensitivity and specificity of chest CT in the diagnosis of COVID-19. European radiology, 31, 2819-2824.

Lauri, C., Signore, A., Glaudemans, A. W., Treglia, G., Gheysens, O., Slart, R. H., ... & Chakfé, N. (2022). Evidence-based guideline of the European Association of Nuclear Medicine (EANM) on imaging infection in vascular grafts. European journal of nuclear medicine and molecular imaging, 49(10), 3430-3451.

Li, B., Jiang, W., Peng, J., & Li, X. (2022). Deep learning-based remote-photoplethysmography measurement from short-time facial video. Physiological Measurement, 43(11), 115003.

Liu, T., Lough, C. S., Sehhat, H., Ren, Y. M., Christofides, P. D., Kinzel, E. C., & Leu, M. C. (2022). In-situ infrared thermographic inspection for local powder layer thickness measurement in laser powder bed fusion. Additive Manufacturing, 55, 102873.

Mansoor, M., & Al Tamimi, M. (2022). Plagiarism detection system in scientific publication using LSTM networks. Internacional Journal Technical and physical problems of engineering, 4(4), 17-24.

Mehboob, F., Rauf, A., Jiang, R., Saudagar, A. K. J., Malik, K. M., Khan, M. B., ... & AlKhathami, M. (2022). Towards robust diagnosis of COVID-19 using vision self-attention transformer. Scientific Reports, 12(1), 8922.

Mehraeen, E., Alinaghi, S. A. S., Nowroozi, A., Dadras, O., Alilou, S., Shobeiri, P., ... & Karimi, A. (2020). A systematic review of ECG findings in patients with COVID-19. Indian Heart Journal, 72(6), 500-507.

Mijwil, M. M., Aggarwal, K., Doshi, R., Hiran, K. K., & Sundaravadivazhagan, B. (2022). Deep learning techniques for COVID-19 detection based on chest X-ray and CT-scan images: a short review and future perspective. Asian J Appl Sci.

Mansoor, M. N., & Al-Tamimi, M. S. (2022). Computer-based plagiarism detection techniques: A comparative study. International Journal of Nonlinear Analysis and Applications, 13(1), 3599-3611.

Qadir, A. M., Abdalla, P. A., & Abd, D. F. (2024). A Hybrid Lung Cancer Model for Diagnosis and Stage Classification from Computed Tomography Images. Iraqi Journal for Electrical & Electronic Engineering, 20(2).

Rifa’i, A. A. (2023). Impact of Work Discipline on Employee Performance. Jurnal Ekonomi, Manajemen Dan Akuntansi, 1(01), 1-8.

Sayenju, S., Aygun, R., Boardman, J., Don, D. P. R., Zhang, Y., Franks, B., ... & Modgil, G. (2022, January). Directional pairwise class confusion bias and its mitigation. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC) (pp. 67-74). IEEE.

Seibert, J. A., & Boone, J. M. (2005). X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. Journal of nuclear medicine technology, 33(1), 3-18.

Seibert, J. A., & Boone, J. M. (2005). X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. Journal of nuclear medicine technology, 33(1), 3-18.

Shkara, A. A., & Hussain, Y. (2018). Heartbeat Amplification and ECG Drawing from Video (Black and White or Colored Videos). Iraqi Journal of Science, 408-419.

Slika, B., Dornaika, F., Merdji, H., & Hammoudi, K. (2023). Vision transformer-based model for severity quantification of lung pneumonia using chest x-ray images. arXiv preprint arXiv:2303.11935.

Sufian, M. M., Moung, E. G., Hijazi, M. H. A., Yahya, F., Dargham, J. A., Farzamnia, A., ... & Mohd Naim, N. F. (2023). COVID-19 classification through deep learning models with three-channel grayscale CT images. Big Data and Cognitive Computing, 7(1), 36.

Talukder, M. A., Layek, M. A., Kazi, M., Uddin, M. A., & Aryal, S. (2024). Empowering covid-19 detection: Optimizing performance through fine-tuned efficientnet deep learning architecture. Computers in Biology and Medicine, 168, 107789.

Uddin, S., Haque, I., Lu, H., Moni, M. A., & Gide, E. (2022). Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Scientific Reports, 12(1), 6256.

Xu, B., Martín, D., Khishe, M., & Boostani, R. (2022). COVID-19 diagnosis using chest CT scans and deep convolutional neural networks evolved by IP-based sine-cosine algorithm. Medical & Biological Engineering & Computing, 60(10), 2931-2949.

Downloads

Published

2025-06-08

How to Cite

Al-Tamimi, M., Jabar, H., Abdulmohsin, H. A., & AL-Jibory, F. khiled. (2025). Determination of Covid-19 Pulmonary Infection Rate From X-Ray Images Using U-Net Model. Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1197–1214. https://doi.org/10.37385/jaets.v6i2.6661