Analysis of Performance and Energy Efficiency for Multi-User Mimo 6G Network Using Beamforming Methods
DOI:
https://doi.org/10.37385/jaets.v6i2.6658Keywords:
6G Network, MU-MIMO, Beamforming Techniques, Energy Efficiency, Sub-THz CommunicationsAbstract
This paper addresses the challenge of high energy consumption in sixth-generation (6G) multi-user multiple-input multiple-output (MU-MIMO) networks by analyzing how different beamforming techniques impact network performance and energy efficiency. Simulations were performed in a sub-THz communication environment using analog, digital, and hybrid beamforming across various base station antenna configurations (64, 128, and 256 elements) and user densities to evaluate performance metrics (such as received power and signal-to-interference-plus-noise ratio) alongside energy consumption. The results show that larger antenna arrays (e.g., 256 elements) provide significantly higher signal quality and received power but require more energy. In contrast, smaller arrays (e.g., 64 elements) use less power at the cost of performance. Digital beamforming with a moderate array size (128 antennas) yields the highest energy efficiency, while hybrid beamforming with the largest array results in the lowest energy efficiency. These findings imply that carefully selecting the beamforming method and antenna array size can balance performance with energy efficiency, guiding the design of more sustainable 6G networks. The novel contribution of this research is a comprehensive comparative analysis of analog, digital, and hybrid beamforming in a 6G MU-MIMO context, providing new insights for optimizing future 6G network deployments.
Downloads
References
Ahmed, A. H., Alrubaee, S. H., Hasan, H. K., & Mohammed, A. H. (2022). Energy efficiency performance for next generation wireless communications. In 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–7, IEEE. https://doi.org/10.1109/HORA55278.2022.9800054
Al-Yasir, Y. I. A., Abdulkhaleq, A. M., Parchin, N. O., Elfergani, I. T., Rodriguez, J., Noras, J. M., Abd-Alhameed, R. A., Rayit, A., & Qahwaji, R. (2022). Green and highly efficient MIMO transceiver system for 5G heterogeneous networks. IEEE Transactions on Green Communications and Networking, 6(1), 500–511. https://doi.org/10.1109/TGCN.2021.3100399
Banday, Y., Rather, G. M., & Begh, G. R. (2020). SINR analysis and interference management of macrocell cellular networks in dense urban environments. Wireless Personal Communications, 111, 1645–1665. https://doi.org/10.1007/s11277-019-06947-1
Borges, D., Montezuma, P., Dinis, R., & Beko, M. (2021). Massive MIMO techniques for 5G and beyond—Opportunities and challenges. Electronics, 10(14), 1667. https://doi.org/10.3390/electronics10141667
Dala Pegorara Souto, V., Dester, P. S., Soares Pereira Facina, M., Gomes Silva, D., de Figueiredo, F. A. P., Rodrigues de Lima Tejerina, G., Silveira Santos Filho, J. C., Silveira Ferreira, J., Mendes, L. L., Souza, R. D., & Cardieri, P. (2023). Emerging MIMO technologies for 6G networks. Sensors, 23(4), 1921. https://doi.org/10.3390/s23041921
Damsgaard, H. J., Ometov, A., Mowla, M. M., Flizikowski, A., & Nurmi, J. (2023). Approximate computing in B5G and 6G wireless systems: A survey and future outlook. Computer Networks, 233, 109872. https://doi.org/10.1016/j.comnet.2023.109872
Feng, D., Lai, L., Luo, J., Zhong, Y., Zheng, C., & Ying, K. (2021). Ultra-reliable and low-latency communications: Applications, opportunities and challenges. Science China Information Sciences, 64(12), 120301. https://doi.org/10.1007/s11432-020-2852-1
Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys & Tutorials, 20(3), 870–913. https://doi.org/10.1109/COMST.2017.2783541
International Telecommunication Union Radiocommunication Sector. (2005). Recommendation ITU-R P.838-3: Specific attenuation model for rain. ITU. https://www.itu.int/rec/R-REC-P.838-3-200503-I
Jing, J., Xiaoxue, C., & Yongbin, X. (2016). Energy-efficiency based downlink multi-user hybrid beamforming for millimeter wave massive MIMO system. Journal of China Universities of Posts and Telecommunications, 23(6), 53–62. https://doi.org/10.1016/S1005-8885(16)60045-6
Maccartney, G. R., Rappaport, T. S., Samimi, M. K., & Sun, S. (2015). Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling. IEEE Access, 3, 1573–1580. https://doi.org/10.1109/ACCESS.2015.2465848
Matalatala, M., Deruyck, M., Tanghe, E., Martens, L., & Joseph, W. (2017). Performance evaluation of 5G millimeter-wave cellular access networks using a capacity-based network deployment tool. Mobile Information Systems, 2017, 1–11. https://doi.org/10.1155/2017/3406074
Meena, P., Pal, M. B., Jain, P. K., & Pamula, R. (2022). 6G communication networks: Introduction, vision, challenges, and future directions. Wireless Personal Communications, 125, 1097–1123. https://doi.org/10.1007/s11277-022-09590-5
Muharar, R. Yunida, Y., & Nasaruddin, N. (2024). On the Performance of Multi-Way Massive MIMO Relay With Linear Processing. IEEE Access, 12, 62006-62029. https://doi.org/10.1109/ACCESS.2024.3394596
Nasaruddin, N., Fuady, M., Walidainy, H., & Yunida, Y. (2023). Design and Evaluation of mmWave MIMO Networks Using 28 and 60 GHz in Urban Areas. Eng. J., 27(11), 73-83. https://doi.org/10.4186/ej.2023.27.11.73
Ning, B., Tian, Z., Mei, W., Chen, Z., Han, C., Li, S., Yuan, J., & Zhang, R. (2023). Beamforming technologies for ultra-massive MIMO in terahertz communications. IEEE Open Journal of the Communications Society, 4, 614–658. https://doi.org/10.1109/OJCOMS.2023.3245669
Rappaport, T. S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., Alkhateeb, A., & Trichopoulos, G. C. (2019). Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access, 7, 78729–78757. https://doi.org/10.1109/ACCESS.2019.2921522
Rihan, M., Abed Soliman, T., Xu, C., Huang, L., & Dessouky, M. I. (2020). Taxonomy and performance evaluation of hybrid beamforming for 5G and beyond systems. IEEE Access, 8, 74605–74626. https://doi.org/10.1109/ACCESS.2020.2984548
Rinanda, W. E. (2019). Analysis effect of interference on passive repeater microwave link based on ITU-T G821 standard. Journal of Telecommunication, Electronic and Control Engineering (JTECE), 1(1), 1–10. https://doi.org/10.20895/jtece.v1i01.27
Saeed, A. Yaldiz, H. E., & Alagoz, F. (2023). GHz-to-THz broadband communications for 6G non-terrestrial networks. ITU Journal on Future and Evolving Technologies, 4, 241–250. https://doi.org/10.52953/AOKY1032
Siddiqi, M. Z., & Mir, T. (2022). Reconfigurable intelligent surface-aided wireless communications: An overview. Intelligent and Converged Networks, 3(1), 33-63. https://doi.org/10.23919/ICN.2022.0007
Singh, K., & Katwe, M. (2023). Energy-efficient resource allocation and user grouping for multi-IRS aided MU-MIMO system. Physical Communication, 60, 102147. https://doi.org/10.1016/j.phycom.2023.102147
Walidainy, H., Raihan, S., Adriman, R., Away, Y., & Nasaruddin, N. (2024). Efficiency energy analysis for 6G communication systems using intelligent reflecting surface architecture. Radioelectronic and Computer Systems, 2024(2), 73-84. https://doi.org/10.32620/reks.2024.2.07
Walrand, J., Varaiya, P., 2014. High-Performance Communication Networks Jean Walrand and Pravin Varaiya.
Yu, Y., Ibrahim, R., & Phan-Huy, D.-T. (2022). Dual gradient descent EMF-aware MU-MIMO beamforming in RIS-aided 6G networks. In 2022 20th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),383–390, IEEE. https://doi.org/10.23919/WiOpt56218.2022.9930548