Calorific Value of Palm Kernel Shell Charcoal (PKSC) Briquette as Solid Fuel

Authors

  • Hendri Nurdin Universitas Negeri Padang
  • Waskito Waskito Universitas Negeri Padang
  • Fadhilah Fadhilah Universitas Negeri Padang
  • Toto Sugiarto Universitas Negeri Padang
  • Andre Kurniawan Universitas Negeri Padang
  • Yolli Fernanda Universitas Negeri Padang
  • Rudy Anarta Universitas Negeri Padang
  • Fathi Aulia DZ Universitas Negeri Padang

DOI:

https://doi.org/10.37385/jaets.v6i2.6336

Keywords:

Briquettes, Palm kernel shell charcoal, Calorific value, Sustainable development, Solid Fuel

Abstract

The need and utilization of energy in society exceed available production. This condition requires acceleration and efforts to find solutions through the diversification of palm shell biomass into solid fuel briquettes. Palm shells have the potential as biomass and renewable energy sources that are selected based on strategic, technical, and environmental considerations. Its utilization so far has only been burned directly which causes air pollution or used as road paving in oil palm plantations. The environmental impact is the accumulation of solid waste, and global warming in the Crude Palm Oil processing industry. The research objective was to obtain the calorific value of palm kernel shell briquettes with carbonization process. The experimental research method carried out by innovating palm kernel shell briquette raw materials at various percentage variances (90%: 10%, 85%: 15%, 80%: 20%, 75%: 25%) using tapioca adhesive. The technical parameters of briquettes making are molding pressure of 10 MPa, particle grains of 60 mesh, carbonization temperature of 400oC; 450oC; 500oC with a holding time of 1 hour. From this study, the calorific value of palm kernel shell charcoal (PKSC) briquettes at a concentration of 85%;15% at a temperature of 400oC was 25.86 MJ/kg with tapioca adhesives as the highest calorific value parameters. The technology used to make palm kernel shell charcoal briquettes is a potential development that can be recommended as a precursor to solid fuels. The impact of developing PKSC biomass energy briquettes is an innovation in utilizing waste to create solid fuels. The implications of this research can be applied by home industries or households. This research is a contribution to solutions in overcoming energy needs and deficiencies as a form of sustainable energy..

Downloads

Download data is not yet available.

References

Abogunrin-Olafisoye, O. B., Adeyi, O., Adeyi, A. J., & Oke, E. O. (2024). Sustainable utilization of oil palm residues and waste in nigeria: practices, prospects, and environmental considerations. Waste Management Bulletin, 2(1), 214–228. https://doi.org/10.1016/j.wmb.2024.01.011

Bazargan, A., Rough, S. L., & McKay, G. (2014). Compaction of palm kernel shell biochars for application as solid fuel. Biomass and Bioenergy, 70, 489–497. https://doi.org/https://doi.org/10.1016/j.biombioe.2014.08.015

Cai, N., Zhang, H., Nie, J., Deng, Y., & Baeyens, J. (2020). Biochar from Biomass Slow Pyrolysis. IOP Conference Series: Earth and Environmental Science, 586(1). https://doi.org/10.1088/1755-1315/586/1/012001

Carter, E., Shan, M., Zhong, Y., Ding, W., Zhang, Y., Baumgartner, J., & Yang, X. (2018). Development of renewable, densified biomass for household energy in China. Energy for Sustainable Development, 46, 42–52. https://doi.org/10.1016/j.esd.2018.06.004

Cui, X., Yang, J., Wang, Z., & Shi, X. (2021). Better use of bioenergy: A critical review of co-pelletizing for biofuel manufacturing. In Carbon Capture Science and Technology (Vol. 1). Elsevier Ltd. https://doi.org/10.1016/j.ccst.2021.100005

Gibson, L., Wilman, E. N., & Laurance, W. F. (2017). How Green is ‘Green’ Energy? In Trends in Ecology and Evolution (Vol. 32, Issue 12, pp. 922–935). Elsevier Ltd. https://doi.org/10.1016/j.tree.2017.09.007

Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129, 134–149. https://doi.org/10.1016/j.jaap.2017.11.019

Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272, 1–10. https://doi.org/10.1016/j.fuel.2020.117632

Haridan, N. A., Yoshida, H., Salleh, M. A. M., & Izhar, S. (2020). Carbonization of excess sewage sludge using superheated water vapor to produce fuel. IOP Conference Series: Materials Science and Engineering, 991(1). https://doi.org/10.1088/1757-899X/991/1/012068

Hasanuddin, Nurdin, H., Waskito, & Sari, D. Y. (2020). Characteristic of Areca Fiber Briquettes as Alternative Energy. Journal of Physics: Conference Series, 1594(1). https://doi.org/10.1088/1742-6596/1594/1/012049

Hasanuddin, Nurdin H, Waskito, & Syahrul. (2015). Pengembangan Bahan Bakar Bioethanol Dari Tumbuhan Tebu Tibarau Dengan Penambahan Zat Kapur Kulit Kerang Untuk Peningkatan Energi Panas (Laporan Penelitian).

Hyväluoma, J., Hannula, M., Arstila, K., Wang, H., Kulju, S., & Rasa, K. (2018). Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar. Journal of Analytical and Applied Pyrolysis, 134, 446–453. https://doi.org/10.1016/j.jaap.2018.07.011

Ikubanni, P. P., Oki, M., Adeleke, A. A., Adediran, A. A., & Adesina, O. S. (2020). Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell. Results in Engineering, 8. https://doi.org/10.1016/j.rineng.2020.100173

Ikumapayi, O. M., & Akinlabi, E. T. (2018). Composition, characteristics and socioeconomic benefits of palm kernel shell exploitation-an overview. In Journal of Environmental Science and Technology (Vol. 11, Issue 5, pp. 220–232). Asian Network for Scientific Information. https://doi.org/10.3923/jest.2018.220.232

Jelita, R., Putra, D., Hafiz, M., Angreini, I., & Fatyasari Nata, I. (2022). Palm Oil Shell Pyrolysis: Temperature Effect, Kinetics, and Thermodynamics Study. International Journal on Advanced Science Engineering Information Technology, 12(6), 2513–2518.

Jeong, Y., Lee, Y. E., & Kim, I. T. (2020). Characterization of sewage sludge and food waste-based biochar for co-firing in a coal-fired power plant: A case study in korea. Sustainability (Switzerland), 12(22), 1–12. https://doi.org/10.3390/su12229411

Kamaruddin, N. A. B., Ghani, W. A. W. A. K., Hamid, M. R. A., Alias, A. B., & Shamsudin, A. H. (2023). Simulation And Analysis Of Calorific Value For Biomass Solid Waste As A Potential Solid Fuel Source For Power Generation. Journal of Applied Science and Engineering, 26(2), 163–173. https://doi.org/10.6180/jase.202302_26(2).0002

Kers, J., Kulu, P., Aruniit, A., Laurmaa, V., Križan, P., Šooš, L., & Kask, Ü. (2010). Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Estonian Journal of Engineering, 16(4), 307–316. https://doi.org/10.3176/eng.2010.4.06

Khurmi, R. S., & Gupta, J. K. (2006). A textbook of thermal engineering (Chapter 11 - Fuel). S. Chand & Company Ltd.

Kipngetich, P., Kiplimo, R., Tanui, J. K., & Chisale, P. (2023). Effects of carbonization on the combustion of rice husks briquettes in a fixed bed. Cleaner Engineering and Technology, 13. https://doi.org/10.1016/j.clet.2023.100608

Lee, X. J., Lee, L. Y., Hiew, B. Y. Z., Gan, S., Thangalazhy-Gopakumar, S., & Kiat Ng, H. (2017). Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresource Technology, 245, 944–953. https://doi.org/10.1016/j.biortech.2017.08.175

Made Mara, I., Made Nuarsa, I., & Kade Wiratama, I. (2024). The effect of particle size and adhesive on the ash content and volatile matter of organic waste bio-charcoal briquettes. International Journal of Engineering Research And Development, 20(3), 67–73.

Mbada, N. I., Atanda, P. O., Aponbiede, O., Abioye, A. A., Ugbaja, M. I., & Alabi, A. S. (2016). Performance Evaluation of Suitability of Carbonized Palm Kernel Shell (PKS) as a Veritable Alternative to Coal and Charcoal in Solid Fuel Fired Furnaces. International Journal of Metallurgical Engineering, 2016(1), 15–20. https://doi.org/10.5923/j.ijmee.20160501.03

Nabila, R., Hidayat, W., Haryanto, A., Hasanudin, U., Iryani, D. A., Lee, S., Kim, S., Kim, S., Chun, D., Choi, H., Im, H., Lim, J., Kim, K., Jun, D., Moon, J., & Yoo, J. (2023). Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization. In Renewable and Sustainable Energy Reviews (Vol. 176). Elsevier Ltd. https://doi.org/10.1016/j.rser.2023.113193

Ngene, G. I., Bouesso, B., González Martínez, M., & Nzihou, A. (2024). A review on biochar briquetting: Common practices and recommendations to enhance mechanical properties and environmental performances. In Journal of Cleaner Production (Vol. 469). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2024.143193

Nurdin, H., Hasanuddin, Darmawi, Setiadhi, Y., & Saddikin, M. (2019). Calorific value of tibarau cane bio-briquette. Journal of Physics: Conference Series, 1317(1). https://doi.org/10.1088/1742-6596/1317/1/012110

Nurdin, H., Hasanuddin, H., Darmawi, D., & Prasetya, F. (2018). Analysis of Calorific Value of Tibarau Cane Briquette. IOP Conference Series: Materials Science and Engineering, 335(1), 1. https://doi.org/10.1088/1757-899X/335/1/012058

Nurdin H, Hasanuddin, & Irzal. (2017). Heat Value Analysis of Briquette Hybrid as Alternative Fuel. In Moch. Solichin & Achmad Syaifudin (Eds.), Prosiding SNTTM XVI (pp. 103–106). http://www.me.its.ac.id

Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7), 1–22. https://doi.org/10.3390/en15072426

Oduro, W. O., Von-Kiti, E., Animpong, M. A. B., Ampomah-Benefo, K., Boafo-Mensah, G., Dazugo, E., Yankson, I. K., Akon-Yamga, G., Issahaku, A., & Ofori-Amanfo, D. (2024). Production of sustainable fuel briquettes from the co-carbonization of sewage sludge derived from wastewater treatment and wood shavings as a sustainable solid fuel for heating energy. South African Journal of Chemical Engineering, 50, 437–444. https://doi.org/10.1016/j.sajce.2024.09.011

Okoroigwe, E. C., & Saffron, C. M. (2012). Determination Of Bio-Energy Potential Of Palm Kernel Shell By Physicochemical Characterization. Nigerian Journal of Technology (NIJOTECH), 31(3), 329–335.

Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S. A., Oki, M., Onokpite, E., Babaremu, K., & Jen, T. C. (2023). Optimization of Pyrolysis Operating Parameters for Biochar Production from Palm Kernel Shell Using Response Surface Methodology. Mathematical Modelling of Engineering Problems, 10(3), 757–766. https://doi.org/10.18280/mmep.100304

Osei Bonsu, B., Takase, M., & Mantey, J. (2020). Preparation of charcoal briquette from palm kernel shells: case study in Ghana. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05266

Selvarajoo, A., & Oochit, D. (2020). Effect of pyrolysis temperature on product yields of palm fibre and its biochar characteristics. Materials Science for Energy Technologies, 3, 575–583. https://doi.org/10.1016/j.mset.2020.06.003

Sithole, T., Pahla, G., Mashifana, T., Mamvura, T., Dragoi, E. N., Saravanan, A., & Sadeghifar, H. (2023). A review of the combined torrefaction and densification technology as a source of renewable energy. Alexandria Engineering Journal, 82, 330–341. https://doi.org/10.1016/j.aej.2023.09.080

SNI. (2000). Standar Nasional Indonesia Briket arang kayu “SNI 01-6235-2000.”

Tamrin. (2016). Pengaruh Konsentrasi Perekat Tepung Tapioka Dan Tanah Liat Terhadap Mutu Briket Batu Bara. Jurnal Teknik Pertanian Lampung, 5(3), 137–144.

Tsai, W. T. (2019). Benefit analysis and regulatory actions for imported palm kernel shell as an environment-friendly energy source in Taiwan. Resources, 8(1). https://doi.org/10.3390/resources8010008

Ukpaka, C., Omeluzor, Ulochukwu, C., & Kk, D. (2019). Production of briquettes with heating value using different palm kernel shell. Discovery Journals, 55(281), 147–157. www.discoveryjournals.orgOPENACCESS

Vega, L. Y., López, L., Valdés, C. F., & Chejne, F. (2019). Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Management, 87, 108–118. https://doi.org/10.1016/j.wasman.2019.01.048

Wang, P., Zhang, J., Shao, Q., & Wang, G. (2018). Physicochemical properties evolution of chars from palm kernel shell pyrolysis. Journal of Thermal Analysis and Calorimetry, 133(3), 1271–1280. https://doi.org/10.1007/s10973-018-7185-z

Yustas, Y. M., Tarimo, W. M., Mbacho, S. A., Kiobia, D. O., Makange, N. R., Kashaija, A. T., Mukama, E. B., Mzigo, C. K., & Silungwe, F. R. (2022). Toward Adaptation of Briquettes Making Technology for Green Energy and Youth Employment in Tanzania: A Review. Journal of Power and Energy Engineering, 10(04), 74–93. https://doi.org/10.4236/jpee.2022.104006

Zanjani, N. G., Moghaddam, A. Z., & Dorosti, S. (2014). Physical and Chemical Properties of Coal Briquettes From Biomass-Bituminous Blends. Petroleum & Coal, 56(2), 188–195.

Downloads

Published

2025-06-08

How to Cite

Nurdin, H., Waskito, W., Fadhilah, F., Sugiarto, T., Kurniawan, A., Fernanda, Y., Anarta, R., & DZ, F. A. (2025). Calorific Value of Palm Kernel Shell Charcoal (PKSC) Briquette as Solid Fuel. Journal of Applied Engineering and Technological Science (JAETS), 6(2), 780–789. https://doi.org/10.37385/jaets.v6i2.6336