Design and Implementation of HMI For Monitoring The Imbalance of Current and Voltage Based on Calculation of Maximum Deviation Mean Value Method
DOI:
https://doi.org/10.37385/jaets.v6i2.6270Keywords:
Imbalance, HMI, PowerTag, V-IAbstract
Voltage and current (V-I) imbalance in a three-phase power system can cause decreased efficiency, increased power losses, equipment heating, induction machine faults, and neutral currents. The main causes of this problem are uneven load distribution, phase failure, or network disturbances. Therefore, monitoring imbalance is critical to determine the right corrective steps. This study aims to design and implement a Human-Machine Interface (HMI) as a tool to monitor voltage and current imbalance using the Calculation Maximum Deviation Mean Value (CMDMV) method. This method calculates the maximum deviation of V-I from each phase to obtain an accurate imbalance value. Current and voltage sensors are used to collect real-time data, which are then processed using CMDMV in the HMI software. The results are displayed in the form of graphs, status indicators, and percentage figures, then compared with a power quality analyzer for accuracy validation. The results show that this HMI system can display V-I imbalance in real-time with a reading error rate when the imbalance condition is below 5%, and when it detects an imbalance in V-I, the indicator turns yellow (WARNING). With the creation of this device, it can help identify V-I imbalances in each phase.
Downloads
References
Antonijevi?, M., Su?i?, S., & Keserica, H. (2018). Augmented reality applications for substation management by utilizing standards-compliant SCADA communication. Energies, 11(3). https://doi.org/10.3390/en11030599
Basuki, A., Timbar Imam Priadi, Anita Puspita Sari, & Trirohadi, H. (2011). SCADA gateway, smart solution for combining conventional substation and substation automation system. International Conference on Advanced Power System Automation and Protection, 2, 1268–1272. https://doi.org/10.1109/APAP.2011.6180573
Benderius, O., Berger, C., & Malmsten Lundgren, V. (2018). The Best Rated Human-Machine Interface Design for Autonomous Vehicles in the 2016 Grand Cooperative Driving Challenge. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1302–1307. https://doi.org/10.1109/TITS.2017.2749970
Biswal, A., & Bansal, H. O. (2015, February). SCADA and its applications to renewable energy systems integration. 9th International Conference on Industrial and Information Systems. https://doi.org/10.1109/ICIINFS.2014.7036641
Boakye-Boateng, K., Ghorbani, A. A., & Lashkari, A. H. (2024). Implementation of a Trust-Based Framework for Substation Defense in the Smart Grid. Smart Cities, 7(1), 99–140. https://doi.org/10.3390/smartcities7010005
Bruce, A. G. (1997). Reliability analysis of electric utility SCADA systems. IEEE Transactions Power Engineering Review, 17(12), 59. https://doi.org/10.1109/pica.1997.599397
Campbell, M., & Arce, G. (2016). Effect of motor voltage unbalance on motor vibration: Test and evaluation. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 54(1), 905–911. https://doi.org/10.1109/PCICON.2016.7589243
Castello, P., Ferrero, R., Pegoraro, P. A., & Toscani, S. (2018). Effect of Unbalance on Positive-Sequence Synchrophasor, Frequency, and ROCOF Estimations. IEEE Transactions on Instrumentation and Measurement, 67(5), 1036–1046. https://doi.org/10.1109/TIM.2017.2782013
Craig Wester, Noel Engelman, Terrence Smith, Kehinde Odetunde, Bob Anderson, J. R. (2015). THE ROLE OF THE SCADA RTU IN TODAY’S SUBSTATION. 2015 68th Annual Conference for Protective Relay Engineers, 622–628.
Czarecki, L. S. (1995). Power related phenomena in three-phase unbalanced systems. IEEE Transactions on Power Delivery, 10(3), 1168–1176. https://doi.org/10.1109/61.400893
Dvorak, D., Krüger, V., & Wang, J. (2022). Innovative HMI and Control Concept for Efficient Thermal Management of Electric Vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21360–21377. https://doi.org/10.1109/TITS.2022.3177761
Gomez-Gil, J., San-Jose-Gonzalez, I., Nicolas-Alonso, L. F., & Alonso-Garcia, S. (2011). Steering a tractor by means of an EMG-based human-machine interface. Sensors, 11(7), 7110–7126. https://doi.org/10.3390/s110707110
Gu, J. C., Liu, C. H., Chou, K. Y., & Yang, M. T. (2019). Research on CBM of the intelligent substation SCADA system. Energies, 12(20). https://doi.org/10.3390/en12203892
Feola, L., Langella, R., & Testa, A. (2013). On the effects of unbalances, harmonics and interharmonics on pll systems. IEEE Transactions on Instrumentation and Measurement, 62(9), 2399–2409. https://doi.org/10.1109/TIM.2013.2270925
Hamici, Z., & Abu Elhaija, W. (2019). Novel Current Unbalance Estimation and Diagnosis Algorithms for Condition Monitoring with Wireless Sensor Network and Internet of Things Gateway. IEEE Transactions on Industrial Informatics, 15(11), 6080–6090. https://doi.org/10.1109/TII.2019.2935743
Hayduk, G., Kwasnowski, P., & Miko?, Z. (2016). Building management system architecture for large building automation systems. Proceedings of the 2016 17th International Carpathian Control Conference, June, 232–235. https://doi.org/10.1109/CarpathianCC.2016.7501100
Jang, S. Il, & Kim, K. H. (2004). An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Transactions on Power Delivery, 19(2), 745–752. https://doi.org/10.1109/TPWRD.2003.822964
Kersting, W. H. (2001). Causes and effects of unbalanced voltages serving an induction motor. IEEE Transactions on Industry Applications, 37(1), 165–170. https://doi.org/10.1109/28.903142
Kulkarni, V., Sahoo, S. K., Thanikanti, S. B., Velpula, S., & Rathod, D. I. (2021). Power systems automation, communication, and information technologies for smart grid: A technical aspects review. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(3), 1017–1029. https://doi.org/10.12928/TELKOMNIKA.v19i3.16428
Lahti, J. P., Shamsuzzoha, A., & Kankaanpää, T. (2011). Web-based technologies in power plant automation and SCADA systems: A review and evaluation. 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, 279–284. https://doi.org/10.1109/ICCSCE.2011.6190537
Lee, G. S., Ji, G. H., Kwon, G. Y., Bang, S. S., Lee, Y. H., Sohn, S. H., Park, K., & Shin, Y. J. (2018). Monitoring method for an unbalanced three-phase HTS cable system via time-frequency domain reflectometry. IEEE Transactions on Applied Superconductivity, 28(4). https://doi.org/10.1109/TASC.2018.2809441
Lee, C. Y. (1999). Effects of unbalanced voltage on the operation performance of a three-phase induction motor. IEEE Transactions on Energy Conversion, 14(2), 202–208. https://doi.org/10.1109/60.766984
Liu, Z., & Milanovi?, J. V. (2015). Probabilistic Estimation of Voltage Unbalance in MV Distribution Networks With Unbalanced Load. IEEE Transactions on Power Delivery, 30(2), 693–703. https://doi.org/10.1109/TPWRD.2014.2322391
Lledó-Ponsati, T., Bahman, A. S., Iannuzzo, F., Montesinos-Miracle, D., & Galceran-Arellano, S. (2021). Effect of current distortion and unbalanced loads on semiconductors reliability. IEEE access, 9, 162660-162670. https://doi.org/10.1109/ACCESS.2021.3133019
Lopatkin, N., & Zinoviev, G. (2023). Overall Currents Unbalance Assessment for Several Three-Phase Loads under Sinusoidal Conditions of Four-Wire Circuit. Proceedings - 2023 International Ural Conference on Electrical Power Engineering, UralCon, 160–165. https://doi.org/10.1109/UralCon59258.2023.10291108
Madrigal, M., & Rocha, B. H. (2007). A contribution for characterizing measured three-phase unbalanced voltage sags algorithm. IEEE Transactions on Power Delivery, 22(3), 1885–1890. https://doi.org/10.1109/TPWRD.2007.893438
Mnukwa, S., & Saha, A. K. (2020). SCADA and substation automation systems for the port of durban power supply upgrade. 2020 International SAUPEC/RobMech/PRASA Conference, 1–5. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041078
Qasim, I., Anwar, M. W., Azam, F., Tufail, H., Butt, W. H., & Zafar, M. N. (2020). A Model-Driven Mobile HMI Framework (MMHF) for Industrial Control Systems. IEEE Access, 8, 10827–10846. https://doi.org/10.1109/ACCESS.2020.2965259
Rahman, M. M., & Uddin, M. N. (2017). Online Unbalanced Rotor Fault Detection of an IM Drive Based on Both Time and Frequency Domain Analyses. IEEE Transactions on Industry Applications, 53(4), 4087–4096. https://doi.org/10.1109/TIA.2017.2691736
Raman, S. H., Hanafiah, M. A. M., Ab Ghani, M. R., & Jusoh, W. N. S. E. W. (2014). A human machine interface (HMI) framework for Smart Grid system. 2014 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA, 318–322. https://doi.org/10.1109/ISGT-Asia.2014.6873810
Reza, S. M. S., Arifeen, M. M., Tiong, S. K., Akhteruzzaman, M., Amin, N., Shakeri, M., Ayob, A., & Hussain, A. (2020). Salsa20 based lightweight security scheme for smart meter communication in smart grid. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(1), 228–233. https://doi.org/10.12928/TELKOMNIKA.V18I1.14798
Silva, M. D., & Ferreira Filho, A. D. L. (2022). An alternative methodology for quantifying voltage unbalance based on the effects of the temperatures and efficiency of induction motors. IEEE Access, 10, 83567-83579. https://doi.org/10.1109/ACCESS.2022.3196357
Shi, H., Zhuo, F., Yi, H., & Geng, Z. (2016). Control strategy for microgrid under three-phase unbalance condition. Journal of Modern Power Systems and Clean Energy, 4(1), 94–102. https://doi.org/10.1007/s40565-015-0182-3
Skripcak, T., Tanuska, P., Konrad, U., & Schmeisser, N. (2013). Toward Nonconventional Human–Machine Interfaces for Supervisory Plant Process Monitoring. IEEE Transactions on Human-Machine Systems, 43(5), 437–450. https://doi.org/10.1109/THMS.2013.2279006
Šverko, M., & Grbac, T. G. (2024). Automated HMI design as a custom feature in industrial SCADA systems. Procedia Computer Science, 232(2023), 1789–1798. https://doi.org/10.1016/j.procs.2024.02.001
Tohir, T., Habinuddin, E., Ilman, S. M., & Febi Ariefka, S. P. (2024). Implementation of Energy Usage Monitoring System in 3 Phase Induction Motor Starting. JTERA (Jurnal Teknologi Rekayasa), 9(1), 21–32. https://doi.org/10.31544/jtera.v9.i1.2024.21-32
Tohir, T., Habinuddin, E., Ilman, S. M., Putra, F. A. S., Anwar, H., & Fadilah, R. (2023). A Comparative Study of Inrush Current on Star, Delta, and Star-Delta Starters for a 1.5kW Three Phase Induction Motor With Power Quality Analyzer and Powertag. 2023 Innovations in Power and Advanced Computing Technologies, i-PACT 2023, 1–7. https://doi.org/10.1109/I-PACT58649.2023.10434677
Ullah, Z., Elkadeem, M. R., Wang, S., & Radosavljevic, J. (2020). A Novel PSOS-CGSA Method for State Estimation in Unbalanced DG-Integrated Distribution Systems. IEEE Access, 8, 113219–113229. https://doi.org/10.1109/ACCESS.2020.3003521
Vekhande, V., Kanakesh, V. K., & Fernandes, B. G. (2016). Control of Three-Phase Bidirectional Current-Source Converter to Inject Balanced Three-Phase Currents under Unbalanced Grid Voltage Condition. IEEE Transactions on Power Electronics, 31(9), 6719–6737. https://doi.org/10.1109/TPEL.2015.2503352
Villani, V., Sabattini, L., Loch, F., Vogel-Heuser, B., & Fantuzzi, C. (2021). A General Methodology for Adapting Industrial HMIs to Human Operators. IEEE Transactions on Automation Science and Engineering, 18(1), 164–175. https://doi.org/10.1109/TASE.2019.2941541
Vlacic, L., Huang, H., Dotoli, M., Wang, Y., Ioannou, P. A., Fan, L., Wang, X., Carli, R., Lv, C., Li, L., Na, X., Han, Q.-L., & Wang, F.-Y. (2024). Automation 5.0: The Key to Systems Intelligence and Industry 5.0. IEEE/CAA Journal of Automatica Sinica, 11(8), 1723–1727. https://doi.org/10.1109/jas.2024.124635