Weather-Baglog Parameters Monitoring System Based IoT-MQTT-Nodered For Mushroom Cultivation Room: A Precision Agriculture

Authors

  • Sumarsono Sumarsono University of Hasyim Asy’ari Tebuireng Jombang
  • Nur Muflihah University of Hasyim Asy’ari Tebuireng Jombang
  • Hadi Sucipto University of Hasyim Asy’ari Tebuireng Jombang

DOI:

https://doi.org/10.37385/jaets.v6i2.6138

Keywords:

IoT-MQTT-Nodered, Multi-sensor, Mushroom Cultivation Room, Precision Agriculture, Weather-Baglog Parameters Monitoring System

Abstract

Mushroom cultivation methods are continually being refined to meet increasing demands for quantity and quality. However, frequent weather fluctuations often pose challenges. They can influence the optimal growth of mushrooms and the baglog's nutrient-chemical. This study aims to implement precision agriculture by developing a weather-baglog parameters monitoring system based on IoT-MQTT-Nodered technology. It seeks to analyze and evaluate the dominant parameters influencing ideal oyster mushroom cultivation room conditions using machine learning classification models and capability process analysis. Sample data was collected from an oyster mushroom cultivation room using a 24-hour monitoring system over seven days. The monitoring tool's system design comprises three parts: multi-sensor data acquisition, communication protocol to the server, and smartphone-based data monitoring. The results demonstrate the system's effectiveness, mobile-access, and durability in monitoring and acquiring weather-baglog parameters data. The best model shows that light, temperature, and humidity are the dominant parameters influencing the ideal oyster cultivation room. Capability process analysis reveals that the dominant parameters in the cultivation room are currently less than ideal.  The implications for improvement are needed an IoT-based control system to regulate them and make them ideal. This finding has been tested as an effective, mobile-access, durable, and data-centering monitoring system.

Downloads

Download data is not yet available.

References

Abdurrahman, A., Umam, R., Irzaman, I., Palupi, E. K., Saregar, A., Syazali, M., ... & Adi, L. C. (2019). Optimization and interpretation of heat distribution in sterilization room using convection pipe. Indonesian Journal of Science and Technology, 4(2), 204-219. https://doi.org/10.17509/ijost.v4i2.18177

Adhiwibowo, W., Daru, A. F., & Hirzan, A. M. (2020). Temperature and Humidity Monitoring Using DHT22 Sensor and Cayenne API. Jurnal Transformatika, 17(2), 209. https://doi.org/10.26623/transformatika.v17i2.1820

Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602-5618. https://doi.org/10.1016/j.jksuci.2021.05.013

Alghazzawi, D., Bamasaq, O., Bhatia, S., Kumar, A., Dadheech, P., & Albeshri, A. (2021). Congestion control in cognitive IoT-based WSN network for smart agriculture. IEEE Access, 9, 151401-151420. https://doi.org/10.1109/ACCESS.2021.3124791

Amr, M. E., Al-Awamry, A. A., Elmenyawi, M. A., Adly, S., & Eldien, T. (2022). Design and Implementation of a Low-cost IoT Node for Data Processing, Case Study: Smart Agriculture. J. Commun., 17(2), 99-109. https://doi.org/10.12720/jcm.17.2.99-109

Anggrawan, A., Satria, C., & Zulfikri, M. (2023). Building an IoT-Based Oyster Mushroom Cultivation and Control System and Its Practical Learning Effects on Students. TEM Journal, 12(3), 1853–1867. https://doi.org/10.18421/TEM123-69

Ariffin, M. A. M., Ramli, M. I., Zainol, Z., Amin, M. N. M., Ismail, M., Adnan, R., Ahmad, N. D., Husain, N., & Jamil, N. (2021). Enhanced iot-based climate control for oyster mushroom cultivation using fuzzy logic approach and nodemcu microcontroller. Pertanika Journal of Science and Technology, 29(4), 2863–2885. https://doi.org/10.47836/PJST.29.4.34

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4), 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005

Bouali, E. T., ABID, M. R., BOUFOUNAS, E.-M., HAMED, T. A., & BENHADDOU, D. (2022). Renewable Energy Integration into Cloud IoT-Based Smart Agriculture. IEEE Access, 10, 1175–1191. https://doi.org/10.1109/ACCESS.2021.3138160

Brouzos, R., Panayiotou, K., Tsardoulias, E., & Symeonidis, A. (2023). A Low-Code Approach for Connected Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 108(2). https://doi.org/10.1007/s10846-023-01861-y

Brownlee, J. (2016). Machine learning mastery with R: get started, build accurate models and work through projects step-by-step. In Machine Learning Mastery.: Vol. First edit. Copyright 2016 Jason Brownlee. http://archive.ics.uci.edu/ml

Bunluewong, K., & Surinta, O. (2021). Semi-Automated Mushroom Cultivation House using Internet of Things. Engineering Access, 7(2), 181–188. https://doi.org/10.14456/mijet.2021.24

Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V, & Rong, X. (2015). Data Mining for the Internet of Things: Literature Review and Challenges. International Journal of Distributed Sensor Networks, 11(8), 431047. https://doi.org/10.1155/2015/431047

Chong, J. L., Chew, K. W., Peter, A. P., Ting, H. Y., & Show, P. L. (2023). Internet of Things (IoT)-Based Environmental Monitoring and Control System for Home-Based Mushroom Cultivation. Biosensors, 13(1). https://doi.org/10.3390/bios13010098

Dayananda, H. S., Thaneswer, P., Hijam Jiten, S., Naseeb, S., & Anubhab, P. (2024). Design and implementation of an IoT-based microclimate control system for oyster mushroom cultivation. International Journal of Agricultural Technology, 20(4), 1431–1450. https://api.elsevier.com/content/abstract/scopus_id/85200798191

Dipali, D., Subramanian, T., & Kumaran, G. S. (2023). A Novel Approach for an Outdoor Oyster Mushroom Cultivation using a Smart IoT-based Adaptive Neuro Fuzzy Controller. International Journal of Advanced Computer Science and Applications, 14(5), 973–981. https://doi.org/10.14569/IJACSA.2023.01405101

Ejigu, N., Sitotaw, B., Girmay, S., & Assaye, H. (2022). Evaluation of Oyster Mushroom (Pleurotus ostreatus) Production Using Water Hyacinth (Eichhornia crassipes) Biomass Supplemented with Agricultural Wastes. International Journal of Food Science, 2022(1), 9289043. https://doi.org/https://doi.org/10.1155/2022/9289043

Elijah, O., Rahman, T. A., Orikumhi, I., & Leow, C. Y. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 5(5), 3758–3773. https://doi.org/10.1109/JIOT.2018.2844296

Farooq, M. S., RIAZ, S., ABID, A., ABID, K., & NAEEM, M. A. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. In IEEE Access (Vol. 7, pp. 156237–156271). https://doi.org/10.1109/ACCESS.2019.2949703

Fasehah, S. N., & Shah, A. (2017). Effect of using various substrates on cultivation of Pleurotus sajor-caju. Journal of Engineering Science and Technology, 12(4), 1104–1110. https://doi.org/https://www.researchgate.net/publication/316943136

Ferdousi, J., Riyadh, Z. Al, Hossain, M. I., Saha, S. R., & Zakaria, M. (2020). Mushroom Production Benefits, Status, Challenges and Opportunities in Bangladesh: A Review. Annual Research & Review in Biology, 34(6 SE-Review Article), 1–13. https://doi.org/10.9734/arrb/2019/v34i630169

Futagawa, M., Iwasaki, T., Murata, H., Ishida, M., & Sawada, K. (2012). A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture. Sensors (Switzerland), 12(6), 8338–8354. https://doi.org/10.3390/s120608338

Garg, S., Pundir, P., Jindal, H., Saini, H., & Garg, S. (2021). Towards a Multimodal System for Precision Agriculture using IoT and Machine Learning. In 2021 12th International Conference on Computing Communication and Networking Technologies, ICCCNT 2021. https://doi.org/10.1109/ICCCNT51525.2021.9579646

Gilligan, R., Moran, R., & McDermott, O. (2023). Six Sigma application in an Irish meat processing plant to improve process yields. TQM Journal, 35(9), 210–230. https://doi.org/10.1108/TQM-02-2023-0040

Gottemukkala, L., Jajala, S. T. R., Thalari, A., Vootkuri, S. R., Kumar, V., & Naidu, G. M. (2023). Sustainable Crop Recommendation System Using Soil NPK Sensor. E3S Web of Conferences, 430. https://doi.org/10.1051/e3sconf/202343001100

Guragain, D. P., Shrestha, B., & Bajracharya, I. (2024). A low-cost centralized IoT ecosystem for enhancing oyster mushroom cultivation. Journal of Agriculture and Food Research, 15. https://doi.org/10.1016/j.jafr.2023.100952

Hadi, M. S., Kusuma, A. U. P. Y., Mizar, M. A., Lestari, D., Witjoro, A., & Irvan, M. (2021). IoT and Fuzzy Logic Based Smart Mushroom Cultivation Technology. 7th International Conference on Electrical, Electronics and Information Engineering: Technological Breakthrough for Greater New Life, ICEEIE 2021. https://doi.org/10.1109/ICEEIE52663.2021.9616842

Haseeb, K., Din, I. U., Almogren, A., & Islam, N. (2020). An energy efficient and secure IoT-based WSN framework: An application to smart agriculture. Sensors (Switzerland), 20(7). https://doi.org/10.3390/s20072081

Irwanto, F., Hasan, U., Lays, E. S., Croix, N. J. D. La, Mukanyiligira, D., Sibomana, L., & Ahmad, T. (2024). IoT and fuzzy logic integration for improved substrate environment management in mushroom cultivation. Smart Agricultural Technology, 7. https://doi.org/10.1016/j.atech.2024.100427

Jasim, D. J., Ali, A. B. M., Qali, D. J., Mahdy, O. S., Salahshour, S., & Eftekhari, S. A. (2024). Using design of experiment via the linear model of analysis of variance to predict the thermal conductivity of Al2O3/ethylene glycol-water hybrid nanofluid. International Journal of Thermofluids, 24, 100829. https://doi.org/https://doi.org/10.1016/j.ijft.2024.100829

Ji, Y., Zheng, F., Wen, J., Li, Q., Chen, J., Maier, H. R., & Gupta, H. V. (2025). An R package to partition observation data used for model development and evaluation to achieve model generalizability. Environmental Modelling & Software, 183, 106238. https://doi.org/https://doi.org/10.1016/j.envsoft.2024.106238

Klesel, M., Schuberth, F., Henseler, J., & Niehaves, B. (2019). A test for multigroup comparison using partial least squares path modeling. Internet Research, 29(3), 464–477. https://doi.org/10.1108/IntR-11-2017-0418

Koutsougeras, C., Saadeh, M., & Fayed, A. (2021). A framework and method for analysis of feed-forward industrial and manufacturing lines. Journal of Intelligent Manufacturing and Special Equipment, 2(2), 75–91. https://doi.org/10.1108/jimse-06-2021-0031

Kumar, A., & Singh, R. (2023). On direct metal laser sintering of functional prototype- X and R- chart and analysis of process capability. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2023.10.052

Kumar, C. A., Shrinivasan, L., R., A. K., S., H., & A., L. V. D. (2024). Intelligent Monitoring of Grey Oyster Mushroom Cultivation with IoT. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 235–239. https://api.elsevier.com/content/abstract/scopus_id/85179741008

Kuzlu, M., Fair, C., & Guler, O. (2021). Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity. Discover Internet of Things, 1(1). https://doi.org/10.1007/s43926-020-00001-4

Kwiatkowski, C. A., & Harasim, E. (2021). The effect of fertilization with spent mushroom substrate and traditional methods of fertilization of common thyme (Thymus vulgaris l.) on yield quality and antioxidant properties of herbal material. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020329

Lee, D. K., In, J., & Lee, S. (2015). Standard deviation and standard error of the mean. Korean Journal of Anesthesiology, 68(3), 220–223. https://doi.org/10.4097/kjae.2015.68.3.220

Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/https://doi.org/10.1016/j.bushor.2015.03.008

Mahmud, M. S. A., Buyamin, S., Mokji, M. M., & Abidin, M. S. Z. (2018). Internet of things based smart environmental monitoring for mushroom cultivation. Indonesian Journal of Electrical Engineering and Computer Science, 10(3), 847–852. https://doi.org/10.11591/ijeecs.v10.i3.pp847-852

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access, 5, 5247–5261. https://doi.org/10.1109/ACCESS.2017.2689040

Masykur, F., Prasetyo, A., Widaningrum, I., Cobantoro, A. F., & Setyawan, M. B. (2020). Application of Message Queuing Telemetry Transport (MQTT) Protocol in the Internet of Things to Monitor Mushroom Cultivation. 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, 135–139. https://doi.org/10.1109/ICITACEE50144.2020.9239118

Mohammed, M. F., Azmi, A., Zakaria, Z., Tajuddin, M. F. N., Isa, Z. M., & Azmi, S. A. (2018). IoT based monitoring and environment control system for indoor cultivation of oyster mushroom. Journal of Physics: Conference Series, 1019(1). https://doi.org/10.1088/1742-6596/1019/1/012053

Mpofu, P., Kembo, S. H., Chimbwanda, M., Jacques, S., Chitiyo, N., & Zvarevashe, K. (2023). A privacy-preserving federated learning architecture implementing data ownership and portability on edge end-points. International Journal of Industrial Engineering and Operations Management, 5(2), 118–134. https://doi.org/10.1108/ijieom-02-2023-0020

Nawandar, N. K., & Satpute, V. R. (2019). IoT based low cost and intelligent module for smart irrigation system. Computers and Electronics in Agriculture, 162, 979–990. https://doi.org/https://doi.org/10.1016/j.compag.2019.05.027

Nguyen, H. H., Shin, D.-Y., Jung, W.-S., Kim, T.-Y., & Lee, D.-H. (2024). An Integrated IoT Sensor-Camera System toward Leveraging Edge Computing for Smart Greenhouse Mushroom Cultivation. Agriculture (Switzerland), 14(3). https://doi.org/10.3390/agriculture14030489

Pinky, N. J., Islam, S. M. M., & Alice, R. S. (2019). Edibility Detection of Mushroom Using Ensemble Methods. International Journal of Image, Graphics and Signal Processing, 11(4), 55–62. https://doi.org/10.5815/ijigsp.2019.04.05

Postolache, S., Sebastião, P., Viegas, V., Miguel, J., Pereira, D., & Postolache, O. (2023). Iot smart sensor system for soil characteristics monitoring in vineyard. International Scientific Conference, Sustainable Agriculture and Rural Development III, 55–66. https://doi.org/https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230392792

Praghash, K., Eswar, V. D. S., Roy, J. Y., Alagarsamy, A., & Arunmetha, S. (2021). Tunnel Based Intra Network Controller Using NGROK Framework For Smart Cities. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 39–43. https://doi.org/10.1109/ICECA52323.2021.9676036

Rahman, H., Faruq, O., Bin, T., Hai, A., Rahman, W., Minoar, M., Hasan, M., & Islam, S. (2022). IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh. Journal of Agriculture and Food Research, 7, 100267. https://doi.org/10.1016/j.jafr.2021.100267

Rahman, R. A., Ramadan, D. N., Hadiyoso, S., Maidin, S. S., & Irawati, I. D. (2023). A SMART KUMBUNG FOR MONITORING AND CONTROLLING ENVIRONMENT IN OYSTER MUSHROOM CULTIVATION BASED ON INTERNET OF THINGS FRAMEWORK. Journal of Applied Engineering and Technological Science, 5(1), 245–257. https://doi.org/10.37385/jaets.v5i1.2248

Rienzo, L. Di, Bazzocchi, R., & Manara, A. (2001). Circular arrays of magnetic sensors for current measurement. IEEE Transactions on Instrumentation and Measurement, 50(5), 1093–1096. https://doi.org/10.1109/19.963165

Rukhiran, M., Sutanthavibul, C., Boonsong, S., & Netinant, P. (2023). IoT-Based Mushroom Cultivation System with Solar Renewable Energy Integration?: Assessing the Sustainable Impact of the Yield and Quality. Sustainability (Switzerland), 15, 1–33. https://doi.org/https://doi.org/10.3390/su151813968

Savaglio, C., Gerace, P., Fatta, G. Di, & Fortino, G. (2019). Data Mining at the IoT Edge. 2019 28th International Conference on Computer Communication and Networks (ICCCN), 1–6. https://doi.org/10.1109/ICCCN.2019.8846941

Singh, R. N., Krishnan, P., Bharadwaj, C., & Das, B. (2023). Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions. Ecological Informatics, 73, 1574–9541. https://doi.org/https://doi.org/10.1016/j.ecoinf.2022.101933

Subedi, A., Luitel, A., Baskota, M., & Acharya, T. D. (2019). IoT Based Monitoring System for White Button. The 6th International Electronic Conference on Sensors and Applications, 3–8. https://doi.org/10.3390/ecsa-6-06545

Sumarsono., Farida Afiatna, F. A. N., & Muflihah, N. (2024). The Monitoring System of Soil PH Factor Using IoT-Webserver-Android and Machine Learning: A Case Study. International Journal on Advanced Science, Engineering and Information Technology, 14(1 SE-Articles), 118–130. https://doi.org/10.18517/ijaseit.14.1.18745

Sumarsono. (2022). SOIL FERTILITY MONITORING SYSTEM BASED ON IoT WEB-SERVER ANDROID (2022/S/03282). https://doi.org/https://pdki-indonesia.dgip.go.id/detail/eabe48eedb75f96c8fc0818cf8

Xue, Y., Xie, J., Xu, X.-S., Yong, L., Hu, B., Liang, J., Li, X.-D., & Qing, L.-S. (2019). UPLC-QqQ/MS combined with similarity assessment of 17 nucleic acid constituents in 147 edible fungi from Sichuan Basin, China. Food Research International, 120, 577–585. https://doi.org/https://doi.org/10.1016/j.foodres.2018.11.008

Downloads

Published

2025-06-08

How to Cite

Sumarsono, S., Muflihah, N., & Sucipto, H. (2025). Weather-Baglog Parameters Monitoring System Based IoT-MQTT-Nodered For Mushroom Cultivation Room: A Precision Agriculture. Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1040–1071. https://doi.org/10.37385/jaets.v6i2.6138