Modification of Multilayer Perceptron Using Detection Rate Model for Prediction of Nominal Exchange Rate

Authors

  • Al-Khowarizmi Al-Khowarizmi Universitas Muhammadiyah Sumatera Utara
  • Romi Fadillah Rahmat Universitas Sumatera Utara
  • Michael J Watts Media Design School
  • Akrim Akrim Universitas Muhammadiyah Sumatera Utara
  • Arif Ridho Lubis Politeknik Negeri Medan
  • Muhammad Basri Universitas Muhammadiyah Sumatera Utara

DOI:

https://doi.org/10.37385/jaets.v6i2.6117

Keywords:

Prediction, MLP, MAPE, Detection Rate

Abstract

An artificial neural network (ANN) is a network of a group of units to be processed which is modeled based on the behavior of human neural networks. ANN has one of its tasks, namely prediction. Multilayer perceptron (MLP) is one of the ANN methods that can be prediction all of data. Where the prediction needs to be reviewed because the prediction process does not always run normally. So, it takes a good measurement accuracy in order to get an accuracy sensitivity. The accuracy technique in this paper is carried out using Mean Absolute Percentage Error (MAPE) based on absolute error and detection rate. The results obtained with absolute error achieve an accuracy of 99.73% while the accuracy based on the detection rate achieves an accuracy of 99.49%. this can be seen in the case of the prediction of (Indonesian Rupiah) IDR exchange rate against United State Dollar (USD) with the MLP algorithm by testing using MAPE to achieve sensitivity with absolute error.

Downloads

Download data is not yet available.

References

Al-Khowarizmi. (2014). Decision Support System to Determine Psychological Disorders using the AHP Method. Universitas Harapan Medan.

Al-Khowarizmi. (2017). Modified of Simple Evolving Connectionist System using Distance Formulas. Universitas Sumatera Utara.

Al-Khowarizmi, A.-K. (2020). Model Classification Of Nominal Value And The Original Of IDR Money By Applying Evolutionary Neural Network. Journal of Informatics and Telecommunication Engineering, 3(2), 258–265. https://doi.org/10.31289/jite.v3i2.3284

Al-Khowarizmi, A., Sitompul, O. S., Suherman, S., & Nababan, E. B. (2017). Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas. Journal of Physics: Conference Series, 930(1). https://doi.org/10.1088/1742-6596/930/1/012004

Al-Khowarizmi, Nasution, I. R., Lubis, M., & Lubis, A. R. (2020). The effect of a secos in crude palm oil forecasting to improve business intelligence. Bulletin of Electrical Engineering and Informatics, 9(4), 1604–1611. https://doi.org/10.11591/eei.v9i4.2388

Al Khowarizmi, Rahmad Syah, Mahyuddin K. M. Nasution, M. E. (2021). Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor. International Journal of Electrical and Computer Engineering (IJECE), 11(3). https://doi.org/http://doi.org/10.11591/ijece.v11i3.pp%25p

Bakri, M. A., Amin Noordin, B. A., Tunde, M. B., & Theng, L. W. (2019). Moderating effects of governance quality on the relationship between stock liquidity and dividend in emerging market countries. Jurnal Pengurusan, 57. https://doi.org/10.17576/pengurusan-2019-57-06

Clarina, M., & Fitriany, F. (2019). The impact of audit market concentration on audit quality: Evidence from Indonesia. Jurnal Pengurusan, 57. https://doi.org/10.17576/pengurusan-2019-57-12

Dai, Z., Zhu, H., & Dong, X. (2020). Forecasting Chinese industry return volatilities with RMB/USD exchange rate. Physica A: Statistical Mechanics and Its Applications, 539, 122994. https://doi.org/https://doi.org/10.1016/j.physa.2019.122994

F, Fauzi; Al-Khowarizmi, A. M. (2020). The e-Business Community Model is Used to Improve Communication Between Businesses by Utilizing. Jite, 3(2), 252–257.

Guiné, R. P. F., Ferrão, A. C., Ferreira, M., Correia, P., Mendes, M., Bartkiene, E., Sz?cs, V., Tarcea, M., Sari?, M. M., ?erneli?-Bizjak, M., Isoldi, K., EL-Kenawy, A., Ferreira, V., Klava, D., Korzeniowska, M., Vittadini, E., Leal, M., Frez-Muñoz, L., Papageorgiou, M., & Djeki?, I. (2020). Influence of sociodemographic factors on eating motivations – modelling through artificial neural networks (ANN). International Journal of Food Sciences and Nutrition, 71(5), 614–627. https://doi.org/10.1080/09637486.2019.1695758

Hutagalung, F. S., Hutasuhut, B. K., & Al-Khowarizmi, A.-K. (2020). Comparison of Simple Additive Weighting (SAW) and Promethee Methods in Rice Quality Selection. Journal of Computer Science, Information Technology and Telecommunication Engineering, 1(1), 24–30. https://doi.org/10.30596/jcositte.v1i1.4358

Kheirollahpour, M. M., Danaee, M. M., Merican, A. F. A. F., & Shariff, A. A. A. A. (2020). Prediction of the Influential Factors on Eating Behaviors: A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks. The Scientific World Journal, 2020, 4194293. https://doi.org/10.1155/2020/4194293

Khowarizmi, A., Akhm, Lubis, M., & Lubis, A. R. (2020). Classification of Tajweed Al-Qur’an on Images Applied Varying Normalized Distance Formulas. 3, 21–25. https://doi.org/10.1145/3396730.3396739

Lasisi, A., Ghazali, R., & Herawan, T. (2016). Chapter 11 - Application of Real-Valued Negative Selection Algorithm to Improve Medical Diagnosis. In D. Al-Jumeily, A. Hussain, C. Mallucci, & C. B. T.-A. C. in M. and H. Oliver (Eds.), Emerging Topics in Computer Science and Applied Computing (pp. 231–243). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-803468-2.00011-4

Laszlo, E. (2014). The chaos point: The world at the crossroads.

Lubis, A.R., Lubis, M., Al-Khowarizmi, & Listriani, D. (2019). Big Data Forecasting Applied Nearest Neighbor Method. ICSECC 2019 - International Conference on Sustainable Engineering and Creative Computing: New Idea, New Innovation, Proceedings. https://doi.org/10.1109/ICSECC.2019.8907010

Lubis, A Ridho, Prayudani, S., & Al-Khowarizmi. (2020). Optimization of MSE Accuracy Value Measurement Applying False Alarm Rate in Forecasting on Fuzzy Time Series based on Percentage Change. 2020 8th International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM50537.2020.9268906

Lubis, Arif Ridho, Lubis, M., & Khowarizmi, A.-. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1), 326–338. https://doi.org/10.11591/eei.v9i1.1464

Lubis, Arif Ridho, Prayudani, S., Lubis, M., & Al-Khowarizmi. (2019). Analysis of the Markov Chain Approach to Detect Blood Sugar Level. Journal of Physics: Conference Series, 1361(1). https://doi.org/10.1088/1742-6596/1361/1/012052

Marques, S. P. C., & Creus, G. J. (2012). SpringerBriefs in Applied Sciences and Technology Computational Mechanics. 125. https://doi.org/Doi 10.1021/Ma300155u

Phua, K.-L., & Lee, L. K. (2005). Meeting the Challenge of Epidemic Infectious Disease Outbreaks: An Agenda for Research. Journal of Public Health Policy, 26(1), 122–132. https://doi.org/10.1057/palgrave.jphp.3200001

Prayudani, S., Hizriadi, A., Lase, Y. Y., Fatmi, Y., & Al-Khowarizmi. (2019). Analysis Accuracy of Forecasting Measurement Technique on Random K-Nearest Neighbor (RKNN) Using MAPE and MSE. Journal of Physics: Conference Series, 1361(1), 0–8. https://doi.org/10.1088/1742-6596/1361/1/012089

Rahmat, R. F., Rizki, A., Alharthi, A. F., & Budiarto, R. (2016). Big data forecasting using evolving multi-layer perceptron. 2016 4th Saudi International Conference on Information Technology (Big Data Analysis), KACSTIT 2016. https://doi.org/10.1109/KACSTIT.2016.7756069

Schikuta, E. (2008). Neural Networks and Database Systems. http://arxiv.org/abs/0802.3582

Setyani, O. (2017). The Effect of Inflation and Exchange Rates on the Indonesian Sharia Stock Index. Doctoral dissertation, Universitas Islam Negeri Sultan Maulana Hasanuddin BANTEN.

Shurui, Z., Shuo, W., Lingran, Y., Xiaoguang, L., & Binlei, G. (2020). The impact of epidemics on agricultural production and forecast of COVID-19. China Agricultural Economic Review, 12(3), 409–425. https://doi.org/10.1108/CAER-04-2020-0055

Downloads

Published

2025-06-08

How to Cite

Al-Khowarizmi, A.-K., Rahmat, R. F., Watts, M. J., Akrim, A., Lubis, A. R., & Basri, M. (2025). Modification of Multilayer Perceptron Using Detection Rate Model for Prediction of Nominal Exchange Rate . Journal of Applied Engineering and Technological Science (JAETS), 6(2), 820–828. https://doi.org/10.37385/jaets.v6i2.6117