Naive Bayes Analysis for Nutritional Fulfillment Prediction in Children

Authors

  • Satrio Agung Wicaksono Universitas Brawijaya
  • Satrio Hadi Wijoyo Universitas Brawijaya
  • Fatmawati Fatmawati Universitas Brawijaya
  • Tri Afirianto Universitas Brawijaya
  • Diva Kurnianingtyas Universitas Brawijaya
  • Mochammad Chandra Saputra Universitas Brawijaya

DOI:

https://doi.org/10.37385/jaets.v6i2.6105

Keywords:

artificial intelligence, machine learning, early detection of child physical growth, nutritional fulfillment, health issues

Abstract

Stunting in children remains a significant global health challenge, particularly in low- and middle-income countries. Addressing this issue requires an effective approach to predicting and preventing inadequate nutritional fulfillment. This study uses the Naïve Bayes approach to forecast nutritional needs for children's growth and development, providing practical information for stunting prevention efforts. The data used were sourced from 174 infant and toddler examinations at the Puskesmas Lawang, involving eight key attributes: gender, age, weight, height, head circumference, pre-screening, vision tests, and nutritional status. Key performance metrics were evaluated to validate the model's predictive capabilities, including accuracy, precision, recall, and F1-score. Six test scenarios were conducted using different percentages of training data (90%, 80%, 70%, 60%, 50%, and 40%) to evaluate the reliability of the Naïve Bayes method. Results indicated that the highest accuracy of 78.84% was achieved in the sixth test scenario. The third test scenario produced the highest precision at 97.5%, while the highest recall (100%) was observed in the first three scenarios. The highest F-measure of 90.3% occurred in the fourth scenario. These results suggest the algorithm's potential for early detection to decrease the number of stunting children. The study’s implications are twofold: practically, the model can be integrated into health monitoring systems to assist healthcare professionals and policymakers in designing more effective nutrition programs; theoretically, it highlights the adaptability of Naive Bayes for handling complex, multi-dimensional health data.

Downloads

Download data is not yet available.

References

Al Moubayed, N., McGough, S., & Hasan, B. A. S. (2020). Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling. PeerJ Computer Science, 6, e252. https://doi.org/10.7717/peerj-cs.252

Alamer, L., Alqahtani, I. M., & Shadadi, E. (2023). Intelligent Health Risk and Disease

Prediction Using Optimized Naive Bayes Classifier. J. Internet Serv. Inf. Secur., 13(1), 1–10. https://doi.org/10.58346/JISIS.2023.I1.001

Appasani, D., Bokkisam, C. S., & Surendran, S. (2024). An Incremental Naive Bayes Learner for Real-time Health Prediction. Procedia Computer Science, 235, 2942–2954. https://doi.org/10.1016/j.procs.2024.04.278

Arumi, E. R., Subrata, S. A., & Rahmawati, A. (2023). Implementation of naïve Bayes method for predictor prevalence level for malnutrition toddlers in Magelang City. Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 201–207.

Ayukarningsih, Y., Sa’adah, H., Kusmayadi, M. A., & Ramadhan, M. Z. (2024). Stunting: Early Detection with Anthropometric Measurements and Management. Journal of Health and Dental Sciences, 4(1), 91–104. https://doi.org/10.54052/jhds.v4n1.p91-104

Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable selection for Naïve Bayes classification. Computers & Operations Research, 135, 105456. https://doi.org/10.1016/j.cor.2021.105456

Bogdal, C., Schellenberg, R., Höpli, O., Bovens, M., & Lory, M. (2022). Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes. Forensic Science International, 331, 111146. https://doi.org/10.1016/j.forsciint.2021.111146

Bours, M. J. L. (2021). Bayes’ rule in diagnosis. Journal of Clinical Epidemiology, 131, 158–160. https://doi.org/10.1016/j.jclinepi.2020.12.021

Chauhan, V. K., Dahiya, K., & Sharma, A. (2019). Problem formulations and solvers in linear SVM: a review. Artificial Intelligence Review, 52, 803–855. https://doi.org/10.1007/s10462-018-9614-6

Chilyabanyama, O. N., Chilengi, R., Simuyandi, M., Chisenga, C. C., Chirwa, M., Hamusonde, K., Saroj, R. K., Iqbal, N. T., Ngaruye, I., & Bosomprah, S. (2022). Performance of machine learning classifiers in classifying stunting among under-five children in Zambia. Children, 9(7), 1082. https://doi.org/10.3390/children9071082

Darnila, E., Maryana, M., Mawardi, K., Sinambela, M., & Pahendra, I. (2022). Supervised models to predict the Stunting in East Aceh. International Journal of Engineering, Science and Information Technology, 2(3), 33–39. https://doi.org/10.52088/ijesty.v2i3.280

Elgadal, A. H., Elnour, A. A., Mohamed, R. M., Omer, Y. A. A., Saeed, A. A., Al-Kubaisi, K. A., Al Mazrouei, N., Beshir, S. A., Menon, V., & Al Amoodi, A. (2024). Assessment of the Nutritional Status of a Hospitalized Children by Using Growth Parameters Ad Indicators: A Cross-Sectional Study. https://doi.org/10.20944/preprints202411.1680.v1

Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. 2019 International Conference on Intelligent Sustainable Systems (ICISS), 24–28. https://doi.org/10.1109/ISS1.2019.8908018

Gosiewska, A., Kozak, A., & Biecek, P. (2021). Simpler is better: Lifting interpretability-performance trade-off via automated feature engineering. Decision Support Systems, 150, 113556. https://doi.org/10.1016/j.dss.2021.113556

Gustriansyah, R., Suhandi, N., Puspasari, S., & Sanmorino, A. (2024). Machine Learning Method to Predict the Toddlers’ Nutritional Status. JURNAL INFOTEL, 16(1), 32–43. https://doi.org/10.20895/infotel.v15i4.988

Hanieh, S., Braat, S., Simpson, J. A., Ha, T. T. T., Tran, T. D., Tuan, T., Fisher, J., & Biggs, B.-A. (2019). The Stunting Tool for Early Prevention: Development and external validation of a novel tool to predict risk of stunting in children at 3 years of age. BMJ Global Health, 4(6), e001801. https://doi.org/10.1136/bmjgh-2019-001801

Hasegawa, J., Ito, Y. M., & Yamauchi, T. (2017). Development of a screening tool to predict malnutrition among children under two years old in Zambia. Global Health Action, 10(1), 1339981. https://doi.org/10.1080/16549716.2017.1339981

Heidkamp, R. A., Piwoz, E., Gillespie, S., Keats, E. C., D’Alimonte, M. R., Menon, P., Das, J. K., Flory, A., Clift, J. W., & Ruel, M. T. (2021). Mobilising evidence, data, and resources to achieve global maternal and child undernutrition targets and the Sustainable Development Goals: an agenda for action. The Lancet, 397(10282), 1400–1418. https://doi.org/10.1016/s0140-6736(21)00568-7

Hemo, S. A., & Rayhan, M. I. (2021). Classification tree and random forest model to predict under-five malnutrition in Bangladesh. Biom Biostat Int J, 10(3), 116–123. https://doi.org/10.15406/bbij.2021.10.00337

Indonesia, S. U. N. (2022). Mengenal Studi Status Gizi Indonesia 2021. Kementerian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional (BAPPENAS).

Jia, Z., Lin, S., Gao, M., Zaharia, M., & Aiken, A. (2020). Improving the accuracy, scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning and Systems, 2, 187–198. https://people.eecs.berkeley.edu/~matei/papers/2020/mlsys_roc.pdf

Mansour, N. A., Saleh, A. I., Badawy, M., & Ali, H. A. (2022). Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. Journal of Ambient Intelligence and Humanized Computing, 1–33. https://doi.org/10.1007/s12652-020-02883-2

Mardiyana, E., Ambarwati, R., & Shifaza, F. (2022). The stunting scorecard for early prevention: Development and external validation of a novel tool for predicting stunting risk in children under 5 years of age. International Journal of Advanced Health Science and Technology, 2(3), 137–144. https://doi.org/10.35882/ijahst.v2i3.2

Mkhize, M., & Sibanda, M. (2020). A review of selected studies on the factors associated with the nutrition status of children under the age of five years in South Africa. International Journal of Environmental Research and Public Health, 17(21), 7973. https://doi.org/10.3390/ijerph17217973

Muflikhah, L., Mahmudy, W. F., & Kurnianingtyas, D. (2023). Machine Learning. Universitas Brawijaya Press. https://books.google.co.id/books/about/Machine_Learning.html?id=tu_uEAAAQBAJ&redir_esc=y

Nandan Prasad, A. (2024). Data Quality and Preprocessing. In Introduction to Data Governance for Machine Learning Systems: Fundamental Principles, Critical Practices, and Future Trends (pp. 109–223). Springer. https://doi.org/10.1007/979-8-8688-1023-7_3

Nazir, A., Akhyar, A., Yusra, Y., & Budianita, E. (2022). Toddler nutritional status classification using C4. 5 and particle swarm optimization. Sci. J. Informatics, 9(1), 32–41. https://doi.org/10.15294/sji.v9i1.33158

Organization, W. H. (2023). Levels and trends in child malnutrition child malnutrition: UNICEF/WHO/World Bank Group Joint Child Malnutrition Estimates: Key findings of the 2023 edition. World Health Organization. https://www.who.int/publications/i/item/9789240073791

Osco, L. P., Ramos, A. P. M., Faita Pinheiro, M. M., Moriya, É. A. S., Imai, N. N., Estrabis, N., Ianczyk, F., Araújo, F. F. de, Liesenberg, V., & Jorge, L. A. de C. (2020). A machine learning framework to predict nutrient content in valencia-orange leaf hyperspectral measurements. Remote Sensing, 12(6), 906. https://doi.org/10.3390/rs12060906

Peretz, O., Koren, M., & Koren, O. (2024). Naive Bayes classifier–An ensemble procedure for recall and precision enrichment. Engineering Applications of Artificial Intelligence, 136, 108972. https://doi.org/10.1016/j.engappai.2024.108972

Permatasari, T., Sandy, Y., Pratiwi, C., Damanik, K., & Silitonga, A. (2023). Naive Bayes Classifier (NBC) application on the nutritional status of adolescents in Medan. Proceedings of the 4th Annual Conference of Engineering and Implementation on Vocational Education, ACEIVE 2022, 20 October 2022, Medan, North Sumatra, Indonesia. https://doi.org/10.4108/eai.20-10-2022.2328884

Putri, T. E., Subagio, R. T., & Sobiki, P. (2020). Classification System Of Toddler Nutrition Status using Naïve Bayes Classifier Based on Z-Score Value and Anthropometry Index. Journal of Physics: Conference Series, 1641(1), 012005. https://doi.org/10.1088/1742-6596/1641/1/012005

Qasrawi, R., Sgahir, S., Nemer, M., Halaikah, M., Badrasawi, M., Amro, M., Vicuna Polo, S., Abu Al-Halawa, D., Mujahed, D., & Nasreddine, L. (2024). Machine Learning Approach for Predicting the Impact of Food Insecurity on Nutrient Consumption and Malnutrition in Children Aged 6 Months to 5 Years. Children, 11(7), 810. https://doi.org/10.3390/children11070810

Rahmi, I., Susanti, M., Yozza, H., & Wulandari, F. (2022). Classification of Stunting in Children Under Five Years in Padang City using Support Vector Machine. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 771–778. https://doi.org/10.30598/barekengvol16iss3pp771-778

Raiten, D. J., & Bremer, A. A. (2020). Exploring the nutritional ecology of stunting: new approaches to an old problem. Nutrients, 12(2), 371.

Reber, E., Schönenberger, K. A., Vasiloglou, M. F., & Stanga, Z. (2021). Nutritional risk screening in cancer patients: the first step toward better clinical outcome. Frontiers in Nutrition, 8, 603936. https://doi.org/10.3389/fnut.2021.603936

Ridwan, A., & Sari, T. N. (2021). The comparison of accuracy between naïve bayes clasifier and c4. 5 algorithm in classifying toddler nutrition status based on anthropometry index. Journal of Physics: Conference Series, 1764(1), 012047. https://doi.org/10.1088/1742-6596/1764/1/012047

Rozaq, A., & Purnomo, A. J. (2022). Classification Of Stunting Status In Toddlers Using Naive Bayes Method In The City Of Madiun Based On Website. Techno Nusa Mandiri, 19(2), 69–76. https://doi.org/10.33480/techno.v19i2.3337

Shen, H., Zhao, H., & Jiang, Y. (2023). Machine learning algorithms for predicting stunting among under-five children in Papua New Guinea. Children, 10(10), 1638. https://doi.org/10.3390/children10101638

Sravani, S., & Karthikeyan, P. R. (2023). Detection of cardiovascular disease using KNN in comparison with naive bayes to measure precision, recall and f-score. AIP Conference Proceedings, 2821(1). https://doi.org/10.1063/5.0177014

Stiawan, D., Idris, M. Y. Bin, Bamhdi, A. M., & Budiarto, R. (2020). CICIDS-2017 dataset feature analysis with information gain for anomaly detection. IEEE Access, 8, 132911–132921. https://doi.org/10.1109/ACCESS.2020.3009843

Syahrial, S., Ilham, R., & Asikin, Z. F. (2022). Stunting Classification in Children’s Measurement Data Using Machine Learning Models. Journal La Multiapp, 3(2), 52–60. https://doi.org/10.37899/journallamultiapp.v3i2.614

Talukder, A., & Ahammed, B. (2020). Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition, 78, 110861. https://doi.org/10.1016/j.nut.2020.110861

Tanumihardjo, S. A., Russell, R. M., Stephensen, C. B., Gannon, B. M., Craft, N. E., Haskell, M. J., Lietz, G., Schulze, K., & Raiten, D. J. (2016). Biomarkers of Nutrition for Development (BOND)—vitamin A review. The Journal of Nutrition, 146(9), 1816S-1848S. https://doi.org/10.3945/jn.115.229708

Ula, M., Ulva, A. F., Ali, M. A., & Said, Y. R. (2022). Application of Machine Learning in Predicting Children’s Nutritional Status with Multiple Linear Regression Models. Multica Science and Technology, 2(2), 42–48. https://doi.org/10.47002/mst.v2i2.363

Ula, M., Ulva, A. F., Mauliza, M., Ali, M. A., & Said, Y. R. (2022). Application Of Machine Learning In Determining The Classification Of Children’s Nutrition With Decision Tree. Jurnal Teknik Informatika (Jutif), 3(5), 1457–1465. https://doi.org/10.20884/1.jutif.2022.3.5.599

Ula, M., Ulva, A. F., Saputra, I., Mauliza, M., & Maulana, I. (2022). Implementation of machine learning using the k-nearest neighbor classification model in diagnosing malnutrition in children. Multica Science and Technology, 2(1), 8–13. https://doi.org/10.47002/mst.v2i1.326

Unicef. (2023). Stunting has declined steadily since 2000–But faster progress is needed to reach the 2030 target. UNICEF, New York, NY. https://data.unicef.org/topic/nutrition/malnutrition/#:~:text=Stunting%20has%20declined%20steadily%20since,target%20is%20to%20be%20achieved

Widyawati, D., Faradibah, A., & Belluano, P. L. L. (2023). Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine. Indonesian Journal of Data and Science, 4(2), 78–86. https://doi.org/10.56705/ijodas.v4i2.76

Yaqoob, A., Musheer Aziz, R., & verma, N. K. (2023). Applications and techniques of machine learning in cancer classification: A systematic review. Human-Centric Intelligent Systems, 3(4), 588–615. https://doi.org/10.1007/s44230-023-00041-3

Yudhana, A., Umar, R., & Saputra, S. (2022). Fish Freshness Identification Using Machine Learning: Performance Comparison of k-NN and Naïve Bayes Classifier. J. Comput. Sci. Eng., 16(3), 153–164. https://doi.org/10.5626/JCSE.2022.16.3.153

Yunus, M., Biddinika, M. K., & Fadlil, A. (2023). Classification of Stunting in Children Using the C4. 5 Algorithm. Jurnal Online Informatika, 8(1), 99–106. https://doi.org/10.15575/join.v8i1.1062

Zong, X.-N., Li, H., & Zhang, Y.-Q. (2024). Height and body mass index trajectories from 1975 to 2015 and prevalence of stunting, underweight and obesity in 2016 among children in Chinese cities: findings from five rounds of a national survey. World Journal of Pediatrics, 20(4), 404–412. https://doi.org/10.1007/s12519-023-00747-1

Downloads

Published

2025-06-08

How to Cite

Wicaksono, S. A., Wijoyo, S. H., Fatmawati, F., Afirianto, T., Kurnianingtyas, D., & Saputra, M. C. (2025). Naive Bayes Analysis for Nutritional Fulfillment Prediction in Children . Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1135–1147. https://doi.org/10.37385/jaets.v6i2.6105