Integrating Fibonacci Retracement To Improve Accuracy of Time Series Prediction of Gold Prices

Authors

  • Bagus Priambodo Universitas Mercu Buana
  • Ruci Meiyanti Universitas Mercu Buana
  • Samidi Samidi Universitas Budi Luhur
  • Gushelmi Gushelmi Universitas Putra Indonesia YPTK
  • Rabiah Abdul Kadir Universiti Kebangsaan Malaysia
  • Azlina Ahmad Universiti Kebangsaan Malaysia

DOI:

https://doi.org/10.37385/jaets.v6i2.6073

Keywords:

Predict Gold Price, Multiple Linear Regression, Fibonacci, SVM, CNN-LSTM

Abstract

The prediction of gold prices is crucial for investors and policymakers due to its significant impact on global financial markets. Machine learning and deep learning have been used for predicting gold prices on time series data. This study employs MLR, SVM and CNN LSTM with Fibonacci retracement levels to forecast gold prices based on time series data. The experiment results demonstrate that combining Fibonacci retracement with model prediction significantly enhances predictive performance compared to prediction without Fibonacci. The use of Fibonacci levels has resulted in a higher R² score and lower RMSE score showing that Fibonacci levels influence the accuracy of gold price predictions and strengthen the overall reliability of gold price forecasts. The findings underscore the potential of combining machine learning models with technical analysis tools in financial forecasting. Integrating the Fibonacci retracement level offers valuable insights for market participants, enabling more informed investment decisions and effective risk management strategies.

Downloads

Download data is not yet available.

References

Agyeman, P. C., Kebonye, N. M., John, K., Bor?vka, L., Vašát, R., & Fajemisim, O. (2022). Prediction of nickel concentration in peri-urban and urban soils using hybridized empirical bayesian kriging and support vector machine regression. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-06843-y

Al-Jabbar, M., Alshahrani, M., Senan, E. M., & Ahmed, I. A. (2023). Analyzing Histological Images Using Hybrid Techniques for Early Detection of Multi-Class Breast Cancer Based on Fusion Features of CNN and Handcrafted. Diagnostics, 13(10). https://doi.org/10.3390/diagnostics13101753

Alhussein, M., Aurangzeb, K., & Haider, S. I. (2020). Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting. IEEE Access, 8, 180544–180557. https://doi.org/10.1109/ACCESS.2020.3028281

Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., Haq, Q. E. U., Saleem, K., & Faheem, M. H. (2023). A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN. Electronics (Switzerland), 12(1), 1–18. https://doi.org/10.3390/electronics12010232

Annuar, A. L. B. K., Pheng, H. S., Nor, S. R. B. M., & Chin, T. A. (2021). A comparative study of moving average and ARIMA model in forecasting gold price. E-Proceedings of the 5th International Conference on Computing, Mathematics and Statistics (ICMS ), 241.

Bulut, L., & Rizvanoghlu, I. (2020). Is gold a safe haven? The international evidence revisited. Acta Oeconomica, 70(4), 531–549. https://doi.org/10.1556/032.2020.00035

Dhahi, S. H., Dhahi, E. H., Khadhim, B. J., & Ahmed, S. T. (2023). Using support vector machine regression to reduce cloud security risks in developing countries. Indonesian Journal of Electrical Engineering and Computer Science, 30(2), 1159–1166. https://doi.org/10.11591/ijeecs.v30.i2.pp1159-1166

Dinesh, S., Nithin Rao, R., Anusha, S. P., & Samhitha, R. (2021). Prediction of Trends in Stock Market using Moving Averages and Machine Learning. 2021 6th International Conference for Convergence in Technology, I2CT 2021, April. https://doi.org/10.1109/I2CT51068.2021.9418097

Dubey, A. D. (2016). Gold price prediction using support vector regression and ANFIS models. 2016 International Conference on Computer Communication and Informatics, ICCCI 2016, January 2016. https://doi.org/10.1109/ICCCI.2016.7479929

E, J., Ye, J., & Jin, H. (2019). A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting. Physica A: Statistical Mechanics and Its Applications, 527, 121454. https://doi.org/10.1016/j.physa.2019.121454

Garcia, C. I., Grasso, F., Luchetta, A., Piccirilli, M. C., Paolucci, L., & Talluri, G. (2020). A comparison of power quality disturbance detection and classification methods using CNN, LSTM and CNN-LSTM. Applied Sciences (Switzerland), 10(19), 1–22. https://doi.org/10.3390/app10196755

Gaspareniene, L., Remeikiene, R., Sadeckas, A., & Ginevicius, R. (2018). The main gold price determinants and the forecast of gold price future trends. Economics and Sociology, 11(3), 248–264. https://doi.org/10.14254/2071-789X.2018/11-3/15

Gaucan, V. (2011). How to use Fibonacci retracement to predict forex market. Journal of Knowledge Management, Economics and Information Technology, 1(2), 1–1.

Hansun, S., & Suryadibrata, A. (2021). Gold price prediction in covid-19 era. International Journal of Computational Intelligence in Control, 13(2), 29–34.

Kilimci, Z. H. (2022). Ensemble Regression-Based Gold Price ( XAU / USD ) Prediction. Journal of Emerging Computer Technologies, 2(June), 7–12.

Krka?, M., Bernat Gazibara, S., Arbanas, Ž., Se?anj, M., & Mihali? Arbanas, S. (2020). A comparative study of random forests and multiple linear regression in the prediction of landslide velocity. Landslides, 17(11), 2515–2531. https://doi.org/10.1007/s10346-020-01476-6

Kumar, R. (2014). Magic of Fibonacci Sequence in Prediction of Stock Behavior. International Journal of Computer Applications, 93(11), 36–40. https://doi.org/10.5120/16262-5926

Lei, D., Zhang, Y., Lu, Z., Lin, H., & Jiang, Z. (2024). Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model. Mathematics, 12(20), 1–17. https://doi.org/10.3390/math12203254

Liu, G. (2022). Research on Prediction and Analysis of Real Estate Market Based on the Multiple Linear Regression Model. Scientific Programming, 2022. https://doi.org/10.1155/2022/5750354

Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 32(23), 17351–17360. https://doi.org/10.1007/s00521-020-04867-x

Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN-LSTM-based model to forecast stock prices. Complexity, 2020. https://doi.org/10.1155/2020/6622927

Makala, D., & Li, Z. (2021). Prediction of gold price with ARIMA and SVM. Journal of Physics: Conference Series, 1767(1). https://doi.org/10.1088/1742-6596/1767/1/012022

Manjula, K. A., & Karthikeyan, P. (2019). Gold price prediction using ensemble based machine learning techniques. Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, 2019-April(April 2019), 1360–1364. https://doi.org/10.1109/icoei.2019.8862557

Manoj, J., & Suresh, K. K. (2019). Forecast Model for Price of Gold?: Multiple Linear Regression with Principal Component Analysis. Thailand Statistician, 17(January), 125–131.

Marcellino, M., Castelblanco, G., & De Marco, A. (2023). Multiple linear regression model for project’s risk profile and DSCR. AIP Conference Proceedings, 2928(1). https://doi.org/10.1063/5.0171033

Mirjanic, B., & Dušica, K. (2022). Application of Fibonacci Sequence in Making Investment Decisions on the Stock Exchange. IAI Academic Conference Proceedings, October, 64.

Mombeini, H., & Yazdani-Chamzini, A. (2015). Modeling Gold Price via Artificial Neural Network. Journal of Economics, Business and Management, 3(7), 699–703. https://doi.org/10.7763/joebm.2015.v3.269

Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Support Vector Machines and Support Vector Regression. In Multivariate Statistical Machine Learning Methods for Genomic Prediction. https://doi.org/10.1007/978-3-030-89010-0_9

Nugroho, A., Warnars, H. L. H. S., Isa, S. M., & Budiharto, W. (2021). Comparison of Binary Particle Swarm Optimization And Binary Dragonfly Algorithm for Choosing the Feature Selection. 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), 24–28. https://doi.org/10.1109/ICICoS53627.2021.9651779

Priambodo, B., & Ahmad, A. (2017). Predicting traffic flow based on average speed of neighbouring road using multiple regression. In H. Badioze Zaman, P. Robinson, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, A. Jaafar, & N. Mohamad Ali (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10645 LNCS (pp. 309–318). Springer International Publishing. https://doi.org/10.1007/978-3-319-70010-6_29

Priambodo, B., Ahmad, A., & Kadir, R. A. (2021). Spatio-temporal K-NN prediction of traffic state based on statistical features in neighbouring roads. Journal of Intelligent & Fuzzy Systems, 40, 9059–9072. https://doi.org/10.3233/JIFS-201493

Priambodo, B., Jokonowo, B., Samidi, Ahmad, A., & Kadir, R. A. (2023). Predict Traffic State Based on PCA-KMeans Clustering of neighbouring roads. International Visual Informatics Conference, 430–442.

Priambodo, B., Kadir, R. A., & Ahmad, A. (2024). Clustering Urban Roads Using Local Binary Patterns to Enhance the Accuracy of Traffic Flow Prediction. International Journal on Advanced Science, Engineering and Information Technology, 14(5), 1514–1520. https://doi.org/10.18517/ijaseit.14.5.11269

Rath, S., Tripathy, A., & Tripathy, A. R. (2020). Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 1467–1474. https://doi.org/10.1016/j.dsx.2020.07.045

Roy, A., & Chakraborty, S. (2023). Support vector machine in structural reliability analysis: A review. Reliability Engineering and System Safety, 233(April). https://doi.org/10.1016/j.ress.2023.109126

Ruth Elizabeth, & Sitorus, S. (2021). Gold Price Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Method. Journal of Mathematics Technology and Education, 1(1), 11–18. https://doi.org/10.32734/jomte.v1i1.6859

Sekar, K. R., Srinivasan, M., Ravidiandran, K. S., & Sethuraman, J. (2017). Gold price estimation using a multi variable model. 2017 International Conference on Networks and Advances in Computational Technologies, NetACT 2017, July, 364–369. https://doi.org/10.1109/NETACT.2017.8076797

Setiawan, A. (2024). Gold Price Administration and Prediction Application using Moving Average Method. 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA), 1–6. https://doi.org/10.1109/ICTIIA61827.2024.10761390

Singh, P., Adebanjo, A., Shafiq, N., Razak, S. N. A., Kumar, V., Farhan, S. A., Adebanjo, I., Singh, A., Dixit, S., Singh, S., & Sergeevna, M. T. (2024). Development of performance-based models for green concrete using multiple linear regression and artificial neural network. International Journal on Interactive Design and Manufacturing, 18(5), 2945–2956. https://doi.org/10.1007/s12008-023-01386-6

Singh, S. K., Nidhi, G., Baliyan, S., & Kumar Mishra, P. (2021). Gold Price Prediction Using Machine Learning Techniques. NeuroQuantology, 3283(20), 274–281. https://doi.org/10.54097/gdm0kc53

Tsinaslanidis, P., Guijarro, F., & Voukelatos, N. (2022). Automatic identification and evaluation of Fibonacci retracements: Empirical evidence from three equity markets. Expert Systems with Applications, 187, 1–14. https://doi.org/10.1016/j.eswa.2021.115893

Tully, E., & Lucey, B. M. (2007). A power GARCH examination of the gold market. Research in International Business and Finance, 21(2), 316–325. https://doi.org/10.1016/j.ribaf.2006.07.001

Xin, Y. (2023). Research on the Gold Price Forecasting Based on Machine Learning Models. Proceedings of the 2022 2nd International Conference on Business Administration and Data Science (BADS 2022), 1339–1346. https://doi.org/10.2991/978-94-6463-102-9_138

Xu, Y., Klein, B., Li, G., & Gopaluni, B. (2023). Evaluation of logistic regression and support vector machine approaches for XRF based particle sorting for a copper ore. Minerals Engineering, 192, 1–20. https://doi.org/10.1016/j.mineng.2023.108003

Yanto, M., Sanjaya, S., Yulasmi, Guswandi, D., & Arlis, S. (2021). Implementation multiple linear regresion in neural network predict gold price. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1635–1642. https://doi.org/10.11591/ijeecs.v22.i3.pp1635-1642

Zhang, P., & Ci, B. (2020). Deep belief network for gold price forecasting. Resources Policy, 69(July), 101806. https://doi.org/10.1016/j.resourpol.2020.101806.

Downloads

Published

2025-06-08

How to Cite

Priambodo, B., Meiyanti, R., Samidi, S., Gushelmi, G., Abdul Kadir, R., & Ahmad, A. (2025). Integrating Fibonacci Retracement To Improve Accuracy of Time Series Prediction of Gold Prices . Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1268–1279. https://doi.org/10.37385/jaets.v6i2.6073