Development of Rammed Earth Material Technology by Utilizing Plastic Waste as Reinforcement on The Partition Walls of The Building Room

Authors

  • Kinanti Wijaya Universitas Negeri Medan
  • Sutrisno Sutrisno Universitas Negeri Medan
  • Harun Sitompul Universitas Negeri Medan
  • Nono Sebayang Universitas Negeri Medan
  • Ruri Aditya Sari Politeknik LP3I Medan
  • Iswandi Idris Politeknik LP3I Medan

DOI:

https://doi.org/10.37385/jaets.v6i2.5959

Keywords:

Rammed earth, partition, wall, material, plastic waste

Abstract

In order to improve the compressive and bending strength of rammed earth materials for use in partition walls, this study investigates the incorporation of plastic trash. The goal of the research is to enhance the performance of sustainable construction materials while addressing the environmental problem of plastic waste. Using a Universal Testing Machine (UTM), compressive and bending strength tests were performed after 30 days for rammed earth mixtures containing four different amounts of plastic trash (0%, 1%, 3%, and 5%). According to the findings, adding plastic trash can increase compressive strength by up to 3%, reaching a maximum strength of 5.17 MPa. However, compressive and bending strength significantly decreased when the plastic percentage was increased over 3%, with the 5% plastic showing the worst performance. According to these results, plastic trash can enhance material performance, but its use requires careful optimization. By putting forth a novel technique for recycling plastic trash, the study supports sustainable building practices and provides a workable substitute for non-load-bearing applications such as partition walls. This study advances our understanding of green building technologies and offers workable ways to cut down on plastic waste in the building industry.

Downloads

Download data is not yet available.

References

Adams, K. T., Osmani, M., Thorpe, T., & Thornback, J. (2017, February). Circular economy in construction: current awareness, challenges and enablers. In Proceedings of the institution of civil engineers-waste and resource management (Vol. 170, No. 1, pp. 15-24). Thomas Telford Ltd. https://doi.org/10.1680/jwarm.16.00011

Anysz, H., & Narloch, P. (2019). Designing the composition of cement stabilized rammed earth using artificial neural networks. Materials, 12(9), 1396. https://doi.org/10.3390/ma12091396

Araki, H., Koseki, J., & Sato, T. (2016). Tensile strength of compacted rammed earth materials. Soils and Foundations, 56(2), 189-204. https://doi.org/10.1016/j.sandf.2016.02.003

Biswas, W. K., & Zhang, X. (2021). Techno-Assessment of the Use of Recycled Plastic Waste in RE. Sustainability, 13(16), 8678. https://doi.org/10.3390/su13168678

Bui, Q. B., Morel, J. C., Reddy, B. V., & Ghayad, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5), 912-919. https://doi.org/10.1016/j.buildenv.2008.07.001

Eudave, R. R., Silva, R. A., Pereira, E., & Romanazzi, A. (2022). Early-age shrinkage and bond of LC-TRM strengthening in rammed earth. Construction and Building Materials, 350, 128809. https://doi.org/10.1016/j.conbuildmat.2022.128809

Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm?. Journal of cleaner production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048

Giuffrida, G., Caponetto, R., Nocera, F., & Cuomo, M. (2021). Prototyping of a novel rammed earth technology. Sustainability, 13(21), 11948. https://doi.org/10.3390/su132111948

Gomes, M. I., Gonçalves, T. D., & Faria, P. (2014). Unstabilized rammed earth: characterization of material collected from old constructions in south Portugal and comparison to normative requirements. International Journal of Architectural Heritage, 8(2), 185-212. https://doi.org/10.1080/15583058.2012.683133

Hamard, E., Cammas, C., Lemercier, B., Cazacliu, B., & Morel, J. C. (2020). Micromorphological description of vernacular cob process and comparison with rammed earth. Frontiers of Architectural research, 9(1), 203-215. https://doi.org/10.1016/j.foar.2019.06.007

Indekeu, M., Woloszyn, M., Grillet, A. C., Soudani, L., & Fabbri, A. (2017). Towards hygrothermal characterization of rammed earth with small-scale dynamic methods. Energy Procedia, 132, 297-302.https://doi.org/10.1016/j.egypro.2017.09.731

Jiang, W., Hu, H., Tang, X., Liu, G., Guo, W., Jin, Y., & Li, D. (2022). Protective energy-saving retrofits of rammed earth heritage buildings using multi-objective optimization. Case Studies in Thermal Engineering, 38, 102343. https://doi.org/10.1016/j.csite.2022.102343

Kariyawasam, K. K. G. K. D., & Jayasinghe, C. (2016). Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials, 105, 519-527. https://doi.org/10.1016/j.conbuildmat.2015.12.189

Kumar, M., & Whittaker, A. S. (2018). Cross-platform implementation, verification and validation of advanced mathematical models of elastomeric seismic isolation bearings. Engineering Structures, 175, 926-943. https://doi.org/10.1016/j.engstruct.2018.08.047

Krahn, T. J. (2019). Essential rammed earth construction: the complete step-by-step guide (Vol. 9). New Society Publishers.

Miqueleiz, L., Ramírez, F., Seco, A., Nidzam, R. M., Kinuthia, J. M., Tair, A. A., & Garcia, R. (2012). The use of stabilised Spanish clay soil for sustainable construction materials. Engineering Geology, 133, 9-15. https://doi.org/10.1016/j.enggeo.2012.02.005

Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and environment, 36(10), 1119-1126. https://doi.org/10.1016/S0360-1323(00)00054-8

Marais, P., Littlewood, J., & Karani, G. (2015). The use of polymer stabilised earth foundations for rammed earth construction. Energy procedia, 83, 464-473. https://doi.org/10.1016/j.egypro.2015.12.166

Nabouch, R., Bui, Q. B., Plé, O., Perrotin, P., Poinard, C., Goldin, T., & Plassiard, J. P. (2016). Seismic assessment of rammed earth walls using pushover tests. Procedia Engineering, 145, 1185-1192. https://doi.org/10.1016/j.proeng.2016.04.153

Narloch, P. L., Lidner, M., Kunicka, E., & Bielecki, M. (2015). Flexural tensile strength of construction elements made out of cement stabilized rammed earth. Procedia Engineering, 111, 589-595. https://doi.org/10.1016/j.proeng.2015.07.049

Oti, J. E., Kinuthia, J. M., & Bai, J. J. E. G. (2009). Engineering properties of unfired clay masonry bricks. Engineering Geology, 107(3-4), 130-139. https://doi.org/10.1016/j.enggeo.2009.05.002

Pele-Peltier, A., Fabbri, A., Morel, J. C., Hamard, E., & Lhenry, M. (2022). A similitude relation to assessing the compressive strength of rammed earth from scale-down samples. Case Studies in Construction Materials, 16, e00921. https://doi.org/10.1016/j.cscm.2022.e00921

Pomponi, F., & Moncaster, A. (2017). Circular economy for the built environment: A research framework. Journal of cleaner production, 143, 710-718. https://doi.org/10.1016/j.jclepro.2016.12.055

Rodríguez-Mariscal, J. D., Canivell, J., & Solís, M. (2021). Evaluating the performance of sonic and ultrasonic tests for the inspection of rammed earth constructions. Construction and Building Materials, 299, 123854. https://doi.org/10.1016/j.conbuildmat.2021.123854

Royani, I. F., Basuki, A., & Sunarmasto, S. (2014). Kajian kuat tekan, kuat tarik, kuat lentur dan redaman bunyi pada panel dinding beton ringan dengan agregat limbah plastik pet dan limbah serbuk kayu. Matriks Teknik Sipil, 2(4). https://doi.org/10.20961/mateksi.v2i4.37360

Saikia, N., & de Brito, J. (2013). Waste Polyethylene Terephthalate as an Aggregate in Concrete. Materials Research, 16, 341–350. https://doi.org/10.1590/S1516-14392013005000017

Sugiyono, D. (2013). Metode penelitian pendidikan pendekatan kuantitatif, kualitatif dan R&D.

Serrano, S., Barreneche, C., Rincón, L., Boer, D., & Cabeza, L. F. (2012). Stabilized rammed earth incorporating PCM: Optimization and improvement of thermal properties and Life Cycle Assessment. Energy Procedia, 30, 461-470. https://doi.org/10.1016/j.egypro.2012.11.055

Serrano, S., de Gracia, A., & Cabeza, L. F. (2016). Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions. Applied energy, 175, 180-188. https://doi.org/10.1016/j.apenergy.2016.05.010

Toufigh, V., & Kianfar, E. (2019). The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Construction and Building Materials, 200, 616-629. https://doi.org/10.1016/j.conbuildmat.2018.12.050

Wangmo, P., Shrestha, K. C., & Aoki, T. (2021). Exploratory study of rammed earth walls under static element test. Construction and Building Materials, 266, 121035. https://doi.org/10.1016/j.conbuildmat.2020.121035

Xu, L., Wong, K. K., Fabbri, A., Champiré, F., & Branque, D. (2018). Loading-unloading shear behavior of rammed earth upon varying clay content and relative humidity conditions. Soils and Foundations, 58(4), 1001-1015. https://doi.org/10.1016/j.sandf.2018.05.005

Yuan, Z., & Bi, J. (2006). The circular economy: A new development strategy in China. Journal of industrial ecology, 10.

Zhang, Y., Jiang, S., Quan, D., Fang, K., Wang, B., & Ma, Z. (2024). Properties of sustainable earth construction materials: A state-of-the-art review. Sustainability, 16(2), 670. https://doi.org/10.3390/su16020670

Downloads

Published

2025-06-08

How to Cite

Wijaya, K., Sutrisno, S., Sitompul, H., Sebayang, N., Sari, R. A., & Idris, I. (2025). Development of Rammed Earth Material Technology by Utilizing Plastic Waste as Reinforcement on The Partition Walls of The Building Room . Journal of Applied Engineering and Technological Science (JAETS), 6(2), 1412–1428. https://doi.org/10.37385/jaets.v6i2.5959