Development of Rammed Earth Material Technology by Utilizing Plastic Waste as Reinforcement on The Partition Walls of The Building Room
DOI:
https://doi.org/10.37385/jaets.v6i2.5959Keywords:
Rammed earth, partition, wall, material, plastic wasteAbstract
In order to improve the compressive and bending strength of rammed earth materials for use in partition walls, this study investigates the incorporation of plastic trash. The goal of the research is to enhance the performance of sustainable construction materials while addressing the environmental problem of plastic waste. Using a Universal Testing Machine (UTM), compressive and bending strength tests were performed after 30 days for rammed earth mixtures containing four different amounts of plastic trash (0%, 1%, 3%, and 5%). According to the findings, adding plastic trash can increase compressive strength by up to 3%, reaching a maximum strength of 5.17 MPa. However, compressive and bending strength significantly decreased when the plastic percentage was increased over 3%, with the 5% plastic showing the worst performance. According to these results, plastic trash can enhance material performance, but its use requires careful optimization. By putting forth a novel technique for recycling plastic trash, the study supports sustainable building practices and provides a workable substitute for non-load-bearing applications such as partition walls. This study advances our understanding of green building technologies and offers workable ways to cut down on plastic waste in the building industry.
Downloads
References
Adams, K. T., Osmani, M., Thorpe, T., & Thornback, J. (2017, February). Circular economy in construction: current awareness, challenges and enablers. In Proceedings of the institution of civil engineers-waste and resource management (Vol. 170, No. 1, pp. 15-24). Thomas Telford Ltd. https://doi.org/10.1680/jwarm.16.00011
Anysz, H., & Narloch, P. (2019). Designing the composition of cement stabilized rammed earth using artificial neural networks. Materials, 12(9), 1396. https://doi.org/10.3390/ma12091396
Araki, H., Koseki, J., & Sato, T. (2016). Tensile strength of compacted rammed earth materials. Soils and Foundations, 56(2), 189-204. https://doi.org/10.1016/j.sandf.2016.02.003
Biswas, W. K., & Zhang, X. (2021). Techno-Assessment of the Use of Recycled Plastic Waste in RE. Sustainability, 13(16), 8678. https://doi.org/10.3390/su13168678
Bui, Q. B., Morel, J. C., Reddy, B. V., & Ghayad, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5), 912-919. https://doi.org/10.1016/j.buildenv.2008.07.001
Eudave, R. R., Silva, R. A., Pereira, E., & Romanazzi, A. (2022). Early-age shrinkage and bond of LC-TRM strengthening in rammed earth. Construction and Building Materials, 350, 128809. https://doi.org/10.1016/j.conbuildmat.2022.128809
Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm?. Journal of cleaner production, 143, 757-768. https://doi.org/10.1016/j.jclepro.2016.12.048
Giuffrida, G., Caponetto, R., Nocera, F., & Cuomo, M. (2021). Prototyping of a novel rammed earth technology. Sustainability, 13(21), 11948. https://doi.org/10.3390/su132111948
Gomes, M. I., Gonçalves, T. D., & Faria, P. (2014). Unstabilized rammed earth: characterization of material collected from old constructions in south Portugal and comparison to normative requirements. International Journal of Architectural Heritage, 8(2), 185-212. https://doi.org/10.1080/15583058.2012.683133
Hamard, E., Cammas, C., Lemercier, B., Cazacliu, B., & Morel, J. C. (2020). Micromorphological description of vernacular cob process and comparison with rammed earth. Frontiers of Architectural research, 9(1), 203-215. https://doi.org/10.1016/j.foar.2019.06.007
Indekeu, M., Woloszyn, M., Grillet, A. C., Soudani, L., & Fabbri, A. (2017). Towards hygrothermal characterization of rammed earth with small-scale dynamic methods. Energy Procedia, 132, 297-302.https://doi.org/10.1016/j.egypro.2017.09.731
Jiang, W., Hu, H., Tang, X., Liu, G., Guo, W., Jin, Y., & Li, D. (2022). Protective energy-saving retrofits of rammed earth heritage buildings using multi-objective optimization. Case Studies in Thermal Engineering, 38, 102343. https://doi.org/10.1016/j.csite.2022.102343
Kariyawasam, K. K. G. K. D., & Jayasinghe, C. (2016). Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials, 105, 519-527. https://doi.org/10.1016/j.conbuildmat.2015.12.189
Kumar, M., & Whittaker, A. S. (2018). Cross-platform implementation, verification and validation of advanced mathematical models of elastomeric seismic isolation bearings. Engineering Structures, 175, 926-943. https://doi.org/10.1016/j.engstruct.2018.08.047
Krahn, T. J. (2019). Essential rammed earth construction: the complete step-by-step guide (Vol. 9). New Society Publishers.
Miqueleiz, L., Ramírez, F., Seco, A., Nidzam, R. M., Kinuthia, J. M., Tair, A. A., & Garcia, R. (2012). The use of stabilised Spanish clay soil for sustainable construction materials. Engineering Geology, 133, 9-15. https://doi.org/10.1016/j.enggeo.2012.02.005
Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: means to drastically reduce the environmental impact of construction. Building and environment, 36(10), 1119-1126. https://doi.org/10.1016/S0360-1323(00)00054-8
Marais, P., Littlewood, J., & Karani, G. (2015). The use of polymer stabilised earth foundations for rammed earth construction. Energy procedia, 83, 464-473. https://doi.org/10.1016/j.egypro.2015.12.166
Nabouch, R., Bui, Q. B., Plé, O., Perrotin, P., Poinard, C., Goldin, T., & Plassiard, J. P. (2016). Seismic assessment of rammed earth walls using pushover tests. Procedia Engineering, 145, 1185-1192. https://doi.org/10.1016/j.proeng.2016.04.153
Narloch, P. L., Lidner, M., Kunicka, E., & Bielecki, M. (2015). Flexural tensile strength of construction elements made out of cement stabilized rammed earth. Procedia Engineering, 111, 589-595. https://doi.org/10.1016/j.proeng.2015.07.049
Oti, J. E., Kinuthia, J. M., & Bai, J. J. E. G. (2009). Engineering properties of unfired clay masonry bricks. Engineering Geology, 107(3-4), 130-139. https://doi.org/10.1016/j.enggeo.2009.05.002
Pele-Peltier, A., Fabbri, A., Morel, J. C., Hamard, E., & Lhenry, M. (2022). A similitude relation to assessing the compressive strength of rammed earth from scale-down samples. Case Studies in Construction Materials, 16, e00921. https://doi.org/10.1016/j.cscm.2022.e00921
Pomponi, F., & Moncaster, A. (2017). Circular economy for the built environment: A research framework. Journal of cleaner production, 143, 710-718. https://doi.org/10.1016/j.jclepro.2016.12.055
Rodríguez-Mariscal, J. D., Canivell, J., & Solís, M. (2021). Evaluating the performance of sonic and ultrasonic tests for the inspection of rammed earth constructions. Construction and Building Materials, 299, 123854. https://doi.org/10.1016/j.conbuildmat.2021.123854
Royani, I. F., Basuki, A., & Sunarmasto, S. (2014). Kajian kuat tekan, kuat tarik, kuat lentur dan redaman bunyi pada panel dinding beton ringan dengan agregat limbah plastik pet dan limbah serbuk kayu. Matriks Teknik Sipil, 2(4). https://doi.org/10.20961/mateksi.v2i4.37360
Saikia, N., & de Brito, J. (2013). Waste Polyethylene Terephthalate as an Aggregate in Concrete. Materials Research, 16, 341–350. https://doi.org/10.1590/S1516-14392013005000017
Sugiyono, D. (2013). Metode penelitian pendidikan pendekatan kuantitatif, kualitatif dan R&D.
Serrano, S., Barreneche, C., Rincón, L., Boer, D., & Cabeza, L. F. (2012). Stabilized rammed earth incorporating PCM: Optimization and improvement of thermal properties and Life Cycle Assessment. Energy Procedia, 30, 461-470. https://doi.org/10.1016/j.egypro.2012.11.055
Serrano, S., de Gracia, A., & Cabeza, L. F. (2016). Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions. Applied energy, 175, 180-188. https://doi.org/10.1016/j.apenergy.2016.05.010
Toufigh, V., & Kianfar, E. (2019). The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Construction and Building Materials, 200, 616-629. https://doi.org/10.1016/j.conbuildmat.2018.12.050
Wangmo, P., Shrestha, K. C., & Aoki, T. (2021). Exploratory study of rammed earth walls under static element test. Construction and Building Materials, 266, 121035. https://doi.org/10.1016/j.conbuildmat.2020.121035
Xu, L., Wong, K. K., Fabbri, A., Champiré, F., & Branque, D. (2018). Loading-unloading shear behavior of rammed earth upon varying clay content and relative humidity conditions. Soils and Foundations, 58(4), 1001-1015. https://doi.org/10.1016/j.sandf.2018.05.005
Yuan, Z., & Bi, J. (2006). The circular economy: A new development strategy in China. Journal of industrial ecology, 10.
Zhang, Y., Jiang, S., Quan, D., Fang, K., Wang, B., & Ma, Z. (2024). Properties of sustainable earth construction materials: A state-of-the-art review. Sustainability, 16(2), 670. https://doi.org/10.3390/su16020670