Large-Scale Periodic Gust Generation and Spectral Analysis Approach for Characterization and Evaluation

Authors

DOI:

https://doi.org/10.37385/jaets.v6i2.4901

Keywords:

Gust Generation, Characterization, MAV, PIV

Abstract

Generating a periodic continuous gust in a controlled manner and at sufficiently large scales for the gust encounter studies on MAV applications is a challenge. In order to achieve it a pitching and plunging flat-plate is utilized with aggressive motion profiles. A range of periodic functions in pitch and plunge axes are investigated for the motion of the gust generator. Significant and distinct vortices are measured with PIV in its wake. An in-depth spectral analysis of the velocity vector field of the wake is performed to investigate the generated gust characteristics since the aggressive motion profiles can produce uniform and/or weak gust characteristics.  To obtain the cases that simulate large-scale transverse wind gusts in a quasi-sinusoidal pattern, the PIV results are evaluated by using auto- and cross-spectral density plots of the entire flow field at the wake, ensuring the consistency of the gust characteristics for future gust wing encounter studies. Four cases in which the flat-plate moves with the quasi-feathering condition provide gusts that are useful to employ in MAV gust studies.

Downloads

Download data is not yet available.

References

Biler, H., Sedky, G., Jones, A. R., Saritas, M., & Cetiner, O. (2021). Experimental investigation of transverse and vortex gust encounters at low Reynolds numbers. AIAA Journal, 59(3), 786–799.

Biler, H., Zaloglu, B., & Cetiner, O. (2015). Effect of Spanwise Gust on a Wing. 8th Ankara International Aerospace Conference, 10–12. http://aiac.ae.metu.edu.tr/paper.php/AIAC-2015-118

Comte-Bellot, G., & Corrsin, S. (1966). The use of a contraction to improve the isotropy of grid-generated turbulence. Journal of Fluid Mechanics, 25(4), 657–682. https://doi.org/10.1017/S0022112066000338

Comte-Bellot, G., & Corrsin, S. (1971). Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. Journal of Fluid Mechanics, 48(2), 273–337. https://doi.org/10.1017/S0022112071001599

Ekmekci, A. (2002). Self-excited oscillations of free-and bonded-shear flow past a resonant cavity [PhD Thesis]. Lehigh University.

Ekmekci, A., & Rockwell, D. (2003). Self-sustained oscillations of shear flow past a slotted plate coupled with cavity resonance. Journal of Fluids and Structures, 17(8), 1237–1245. https://doi.org/10.1016/S0889-9746(03)00073-2

Ekmekci, A., & Rockwell, D. (2007). Oscillation of shallow flow past a cavity: Resonant coupling with a gravity wave. Journal of Fluids and Structures, 23(6), 809–838. https://doi.org/10.1016/j.jfluidstructs.2006.12.005

Ekmekci, A., & Rockwell, D. (2010). Effects of a geometrical surface disturbance on flow past a circular cylinder: A large-scale spanwise wire. Journal of Fluid Mechanics, 665, 120–157. https://doi.org/10.1017/S0022112010003848

Engin, K., Aydin, E., Zaloglu, B., Fenercioglu, I., & Cetiner, O. (2018). Large scale spanwise periodic vortex gusts or single spanwise vortex impinging on a rectangular wing. 2018 Fluid Dynamics Conference, 3086. https://doi.org/10.2514/6.2018-3086

Fu, H., & Rockwell, D. (2005). Shallow flow past a cylinder: Control of the near wake. Journal of Fluid Mechanics, 539, 1–24. https://doi.org/10.1017/S0022112004002666

Fuller, J. R. (1997). Evolution and future development of airplane gust loads design requirements. 1997 World Aviation Congress, 5577. https://doi.org/10.2514/6.1997-5577

Garby, L. C., Kuethe, A. M., & Schetzer, J. D. (1957). The generation of gusts in a wind tunnel and measurement of unsteady lift on an airfoil (Vol. 57). Wright Air Development Division, Air Research and Development Command ….

Hakkinen, R. J., & Richardson Jr, A. S. (1957). Theoretical and experimental investigation of random gust loads Part I: Aerodynamic transfer function of a simple wing configuration in incompressible flow (NACA-TN-3878). National Advisory Committee for Aeronautics.

Hufstedler, E. A. L., & McKeon, B. J. (2019). Vortical gusts: Experimental generation and interaction with wing. AIAA Journal, 57(3), 921–931. https://doi.org/10.2514/1.J056914

Hunsacker, J. C., & Wilson, E. B. (1915). Report on behaviour of aeroplanes in gust turbulence (NACA TR-1 (MIT)). National Advisory Committee for Aeronautics.

Jancauskas, E., & Melbourne, W. (1980). The measurement of aerodynamic admittance using discrete frequency gust generation. Australasian Conference on Hydraulics and Fluid Mechanics (7th: 1980: Brisbane, Qld.), 70–73.

Jones, A. R., & Cetiner, O. (2021). Overview of unsteady aerodynamic response of rigid wings in gust encounters. AIAA Journal, 59(2), 731–736. https://doi.org/10.2514/1.J059602

Jones, A. R., Cetiner, O., & Smith, M. J. (2022). Physics and modeling of large flow disturbances: Discrete gust encounters for modern air vehicles. Annual Review of Fluid Mechanics, 54, 469–493. https://doi.org/10.1146/annurev-fluid-031621-085520

Jones, M., & Yamaleev, N. (2012). The effect of a gust on the flapping wing performance. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1080. https://doi.org/10.2514/6.2012-1080

Klein, S., Hoppmann, D., Scholz, P., & Radespiel, R. (2015). High-lift airfoil interacting with a vortical disturbance: Wind-tunnel measurements. AIAA Journal, 53(6), 1681–1692. https://doi.org/10.2514/1.J053441

Lian, Y., & Shyy, W. (2007). Aerodynamics of low Reynolds number plunging airfoil under gusty environment. 45th AIAA Aerospace Sciences Meeting and Exhibit, 71. https://doi.org/10.2514/6.2007-71

Makita, H. (1991). Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dynamics Research, 8(1–4), 53. https://doi.org/10.1016/0169-5983(91)90030-M

Murrow, H., Pratt, K., & Houbolt, J. (1989). NACA/NASA research related to evolution of US gust design criteria. 30th Structures, Structural Dynamics and Materials Conference, 1373. https://doi.org/10.2514/6.1989-1373

NATO STO. (2020). Unsteady Aerodynamic Response of Rigid Wings in Gust Encounters (STO-TR-AVT-282). https://www.sto.nato.int/publications/STO%20Technical%20Reports/STO-TR-AVT-282/$$TR-AVT-282-ALL.pdf

Neumann, J., & Mai, H. (2013). Gust response: Simulation of an aeroelastic experiment by a fluid–structure interaction method. Journal of Fluids and Structures, 38, 290–302. https://doi.org/10.1016/j.jfluidstructs.2012.12.007

Newland, D. E. (2005). Digital spectral analysis I: Discrete Fourier transforms. In An Introduction to Random Vibrations, Spectral & Wavelet Analysis (Third Edition, pp. 113–124). Dover Publications.

Olson, D. A., Naguib, A. M., & Koochesfahani, M. M. (2021). Development of a low-turbulence transverse-gust generator in a wind tunnel. AIAA Journal, 59(5), 1575–1584. https://doi.org/10.2514/1.J059962

Perrotta, G., & Jones, A. R. (2016). Transient aerodynamics of large transverse gusts and geometrically similar maneuvers. 54th AIAA Aerospace Sciences Meeting, 2074.

Perrotta, G., & Jones, A. R. (2017). Unsteady forcing on a flat-plate wing in large transverse gusts. Experiments in Fluids, 58(8), 1–11. https://doi.org/10.1007/s00348-017-2385-z

Reid, C. F., & Wrestler, C. (1961). An investigation of a device to oscillate a wind-tunnel airstream (Technical Note D-739). NASA.

Roadman, J., & Mohseni, K. (2009). Gust characterization and generation for wind tunnel testing of micro aerial vehicles. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1290. https://doi.org/10.2514/6.2009-1290

Saddington, A., Finnis, M., & Knowles, K. (2015). The characterisation of a gust generator for aerodynamic testing. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(7), 1214–1225. https://doi.org/10.1177/0954410014548237

Sever, A. C. (2005). Self-excited oscillations due to flow past slotted plate configurations [PhD Thesis]. Lehigh University.

Smith, Z. F. (2018). Micro air vehicle scale gust-wing interaction in a wind tunnel [M.Sc Thesis]. University of Maryland.

Son, O., & Cetiner, O. (2017). Three-dimensionality effects due to change in the aspect ratio for the flow around an impulsively pitching flat plate. Journal of Aerospace Engineering, 30(5), 04017053.

Son, O., & Cetiner, O. (2018). Force-motion phase relations and aerodynamic performance of a plunging plate. Experiments in Fluids, 59(2), 1–11. https://doi.org/10.1007/s00348-017-2484-x

Viswanath, K., & Tafti, D. K. (2010). Effect of frontal gusts on forward flapping flight. AIAA Journal, 48(9), 2049–2062. https://doi.org/10.2514/1.J050263

Watkins, S., Milbank, J., Loxton, B. J., & Melbourne, W. H. (2006). Atmospheric winds and their implications for microair vehicles. AIAA Journal, 44(11), 2591–2600. https://doi.org/10.2514/1.22670

Watkins, S., Thompson, M., Shortis, M., Segal, R., Abdulrahim, M., & Sheridan, J. (2010). An overview of experiments on the dynamic sensitivity of MAVs to turbulence. Aeronautical Journal, 114(1158), 485–492. https://doi.org/10.1017/s0001924000003973

Wei, N. J., Kissing, J., & Tropea, C. (2019b). Generation of periodic gusts with a pitching and plunging airfoil. Experiments in Fluids, 60(11), 1–20. https://doi.org/10.1007/s00348-019-2815-1

Wei, N. J., Kissing, J., Wester, T. T., Wegt, S., Schiffmann, K., Jakirlic, S., Hölling, M., Peinke, J., & Tropea, C. (2019a). Insights into the periodic gust response of airfoils. Journal of Fluid Mechanics, 876, 237–263. https://doi.org/10.1017/jfm.2019.537

Young, A. M., & Smyth, A. S. (2021). Gust–airfoil coupling with a loaded airfoil. AIAA Journal, 59(3), 773–785. https://doi.org/10.2514/1.J059688

Zarovy, S., Costello, M., Mehta, A., Gremillion, G., Miller, D., Ranganathan, B., Humbert, J. S., & Samuel, P. (2010). Experimental study of gust effects on micro air vehicles. AIAA Atmospheric Flight Mechanics Conference, 7818.

Downloads

Published

2025-06-08

How to Cite

Zaloglu, B., & Cetiner, O. (2025). Large-Scale Periodic Gust Generation and Spectral Analysis Approach for Characterization and Evaluation. Journal of Applied Engineering and Technological Science (JAETS), 6(2), 849–861. https://doi.org/10.37385/jaets.v6i2.4901