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ABSTRACT  

Human activity recognition (HAR) plays a vital role in health monitoring by providing detailed insights 

into daily movements. This study aims to enhance HAR by developing a lightweight and efficient machine 

learning model that balances accuracy, real-time performance, and affordability. Using acceleration 

data from a wearable inertial sensor, we extracted a novel feature set optimized for computational 

efficiency. The proposed model was evaluated on a benchmark dataset, achieving an accuracy of 98.9%, 

in classifying six essential daily activities: walking, walking upstairs, walking downstairs, laying, sitting, 

and standing. These results demonstrate the model’s potential for real-time health monitoring 

applications, offering a cost-effective and deployable solution for wearable-based activity recognition. 

Keywords: Accelerometer, Classification, Feature Extraction, Human Activity Recognition, Wearable. 

 

1. Introduction  

Human activity recognition has seen remarkable advancements in recent decades, driven 

by its broad usefulness across various domains. An increasing number of real-world issues, 

including those in healthcare, fall detection for the elderly, industrial applications, and security, 

require solutions based on activity recognition (Roitberg et al., 2014; Chernbumroong et al., 

2013; Peetoom et al., 2015; Jain & Kanhangad, 2015; Pierleoni et al., 2025; Pham Van Thanh et 
al, 2015). By gathering data on user behavior and offering various modes of interaction, activity 

recognition technology enables systems to actively assist users in their tasks (Ziaeefard  et al., 

2015). 

As technology advances, sensors become increasingly varied to enhance identification 

rates and adapt to diverse environments. Three primary approaches are used to address the 

challenge of human activity recognition: wearable sensors, computer vision-based approaches, 

and environment interactive sensor-based approaches (Marquis-Faulkes et al., 2005; Lin  & 

Ling, 2007; Hazelhoff et al., 2008; Shieh and Huang, 2009; Wang et al., 2016). In vision-based 

techniques, cameras or video are used to observe changes in the surrounding environment and 

user behavior. However, there are restrictions on the use of surveillance cameras, such as poor 

lighting, high costs, and privacy concerns. To monitor user behavior, an environment interactive 

sensor-based technique embeds sensors in objects or subjects within the surrounding 

environment. Similar to the computer vision-based method, pre-installation and deployment of 

this system are required (Sundholm et al., 2014; Rahman et al. 2015; Jamil et al., 2015; Hevesi 

et al., 2014; Torres, 2018).   
The wearable approach has created a wealth of new opportunities for detecting human 

activity (Sepahvand et al., 2025; Zhang et al., 2024; Khan et al., (2010); Zhu & Sheng, 2011). 

They are suitable for any indoor or outdoor venue without requiring any setup. The goal of this 

research is to use body-worn sensors to recognize human activities and states. 
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Existing HAR methods often suffer from limited generalizability and robustness when applied 

to real-world environments. Many approaches rely on predefined datasets collected in controlled 

settings, leading to models that struggle with unseen variations in human movement. 

Additionally, computational efficiency remains a concern, particularly for resource-constrained 

devices such as wearables and embedded systems. While deep learning models have shown 

promise, their reliance on large-scale labeled data and high computational power limits their 

practical deployment in real-time applications. 

This study aims to address these limitations by proposing an adaptive HAR framework 

that enhances recognition accuracy while optimizing computational efficiency. This study 

focused on using a single 3-axis accelerometer integrated into a low-cost system to minimize the 

impact on human movement. Additionally, we analyzed data from multiple subjects to 

determine whether the data clustered according to different activities. Our work makes several 

contributions. The first main contribution is the proposal and demonstration of a simple feature 

set that achieves good classification performance. The second contribution is the development 

of a real-time HAR system. 

 

2. Literature Review 

Human activity recognition (HAR) and monitoring technologies have gained significant 

attention in recent years due to their applications in healthcare, industrial settings, and assisted 

living. Various approaches leveraging inertial measurement units (IMUs), wearable sensors, and 

machine learning techniques have been explored to enhance recognition accuracy and system 

reliability. 

 

Human Activity Recognition in Industrial and Assisted Living Contexts 

Human activity recognition plays a crucial role in industrial human-robot interaction and 

assisted living applications. Roitberg et al. (2014) presented a HAR system for industrial 

environments, where precise recognition of worker activities is essential for safety and 

efficiency. Similarly, Chernbumroong et al. (2013) focused on elderly activity classification to 

support assisted living, using machine learning techniques to distinguish various daily activities. 

Peetoom et al. (2015) reviewed monitoring technologies for independent elderly individuals, 

emphasizing the importance of unobtrusive and reliable sensing solutions. Their findings 

highlighted the potential of wearable and ambient sensors in improving the quality of life for 

aging populations. 

 

Sensor-based Approaches for HAR 

Jain & Kanhangad (2015) explored the use of accelerometer and orientation sensor data 

in smartphones for personal authentication, demonstrating the potential of IMU sensors in HAR 

applications. Pierleoni et al. (2015) developed a high-reliability wearable device for fall 

detection in the elderly, which combined accelerometer-based features with a robust 

classification model. Similarly, Pham Van Thanh et al. (2015) proposed a real-time fall 

detection system using a 3-degree-of-freedom accelerometer, highlighting its high accuracy and 

simplicity. 

Ziaeefard et al., (2015) provided a comprehensive review of semantic HAR, discussing 

how contextual information improves activity classification accuracy. Marquis-Faulkes et al., 

(2005) gathered user requirements for fall detection systems, emphasizing usability and 

acceptance among elderly users. Additional research, such as Lin & Ling (2007) and Hazelhoff 

et al. (2008), investigated video-based fall detection, demonstrating the effectiveness of vision-

based methods for intelligent homecare applications. 

 

Wearable Sensors and Smart Environment-based HAR 

Smartphone and wearable sensor-based HAR have been widely studied. Wang et al. 

(2016) compared different inertial sensor configurations in smartphones for activity recognition, 

emphasizing the trade-offs between sensor placement and recognition accuracy. Sundholm et al. 

(2014) introduced a smart-mat-based system for exercise recognition, showcasing alternative 

sensing modalities beyond IMUs. 
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Rahman et al. (2015) proposed DoppleSleep, a contactless sleep monitoring system using 

Doppler radar, demonstrating the feasibility of non-invasive HAR solutions. Hevesi et al. (2014) 

used thermal sensor arrays for household activity recognition, showcasing a cost-effective 

alternative to vision-based approaches. Similarly, Torres (2018) explored distributed smart 

camera networks for fall detection and localization, demonstrating the role of networked sensing 

in elderly care. 

 

Machine Learning and Deep Learning in HAR 

The use of machine learning and deep learning has significantly improved HAR 

performance. Sepahvand et al. (2025) provided a state-of-the-art survey on IMU-based HAR, 

covering feature extraction, classification models, and real-world applications. Zhang et al., 

(2024) proposed a multi-level network for HAR using wearable sensors, demonstrating 

improvements in classification accuracy using hierarchical architectures. 

Earlier works such as Khan et al., (2010) and Zhu & Sheng (2011) explored 

accelerometer-based HAR and gesture recognition for robot-assisted living, respectively. 

Bulling et al. (2014) provided a tutorial on using body-worn inertial sensors for HAR, covering 

key challenges such as sensor placement, feature engineering, and computational efficiency. 

Banos et al. (2014) examined the impact of window size on HAR performance, showing 

how temporal segmentation affects classification accuracy. Kwapisz et al. (2011) utilized 

smartphone accelerometers for activity recognition, pioneering mobile-based HAR. Catal et al. 

(2015) explored ensemble classifiers for HAR, demonstrating improved accuracy using 

classifier fusion techniques. 

 

Public Datasets and Benchmarking 

Walse, K. H et al. (2016) compared machine learning algorithms for HAR using the 

WISDM dataset, identifying optimal classifiers for different activity types. Vavoulas et al. 

(2016) introduced the MobiAct dataset, enabling standardized benchmarking for HAR research. 

The availability of such datasets has facilitated the development and evaluation of robust HAR 

models. 

Overall, the literature highlights significant progress in HAR technologies, particularly in 

wearable sensor-based activity recognition, fall detection, and machine learning-driven 

approaches. Future research should focus on improving model generalization, enhancing real-

time deployment, and integrating multi-modal sensing for more robust activity recognition 

systems. 

 

3. Material and Methods 

Human Activity Recognition Model 

Machine learning models are commonly categorized into supervised learning, 

unsupervised learning, semi-supervised learning, and sometimes reinforcement learning, based 

on their learning styles. The supervised learning algorithm uses a mapping function that creates 

known (input, result) pairs to predict the outcome. Unsupervised learning, on the other hand, 

uses only input data without any predicted labels or outcomes. While a lot of data is used in 

semi-supervised learning, not all of it is labeled. Furthermore, depending on the present 

situation, the system can select the best course of action to maximize performance according to 

reinforcement learning models. To increase accuracy, this investigation will use supervised 

learning. The selection of supervised learning is based on several key factors that enhance the 

reliability and accuracy of our estimations: i) our study benefits from a well-structured dataset 

with sufficient labeled samples; ii) supervised learning provides a higher degree of predictive 

accuracy compared to unsupervised or semi-supervised methods; iii) the complexity of the task 

favors supervised learning over other approaches. 

As illustrated in Fig. 1, the entire approach for human activity recognition involves three 

stages: data collection, feature analysis, and activity recognition. 
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Fig. 1. Human Activity Recognition Using Acceleration Sensor 
The stream acceleration data in three axes (Ax, Ay, and Az) would be divided into L-

second segments. Subsequently, features derived from the data would be contained in each 

vector formed from each of the aforementioned segments. Selecting features to feed into the 

classifier would be the next stage. Lastly, the features chosen in the previous stage would be 

used to train classification models. The classifiers would then be obtained to recognize activities 

based on the learned model. Each task's specifics are covered in the sections that follow. 

 

Data Acquisition 

To facilitate classification tasks, the suggested system combines a wireless data 

transmitter/receiver, a low-cost IMU, and a ADXL345 sensor (at a sampling rate of 50 Hz) into 

the wearable. Data will be transferred from this device to an Android-powered smartphone. This 

technique can greatly reduce the inconvenience that users experience when recording data. A 

total of 10 subjects (5 males, 5 females, aged between 18 and 28 years) participated in the study. 

All participants provided informed consent before participating in the study. The research 

protocol was approved by Ethics Committee, adhering to ethical guidelines for human data 

collection and privacy protection. Table I below provides definitions of popular human 

activities from an existing benchmarking UCI data. 

After building the model, as shown in Fig. 1, and designing the system with hardware 

components, as shown in the Results section, we applied the algorithm to this device. The 

embedded device's microcontroller served as its central processing unit. Consequently, memory 

requirements and algorithmic complexity were present during real-time identification. 
Table 1 - Labels in HAR 

Activity Description 

Standing Upright on the feet without significant movement 

Sitting Seated with the body weight supported primarily by the buttocks and thighs 

Laying An individual is in a horizontal position 

Walking Moving at a regular and fairly slow pace by lifting and setting down each foot in turn 

Walking 

Upstairs 

Coordinated steps where one foot is placed on a higher step followed by the other foot 

Walking 

Downstairs 

Moving down stairs by placing one foot on a lower step followed by the other foot 

 

Feature Analysis 

Window Size: Energy-based segmentation, rest-position segmentation, sliding window 

segmentation, segmentation using one modality of sensors to segment data from another 

modality, and external context sources were among the many segmentation approaches 

available (Bulling et al., 2014). The sliding window method of data segmentation was used for 

this work due to its ease of use and compatibility with real-time applications (Banos et al., 

2014). It has been demonstrated that this method works well for identifying both static activities 

(like standing and sitting) and periodic activities (like walking). This method divides the sensor 
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signals into fixed-size time intervals. These come in two varieties: overlapping windows and 

non-overlapping windows. In the former case, the time windows overlap. 

The system's performance in terms of recognition is greatly impacted by the choice of 

window size. Therefore, experimenting with various window sizes was necessary to obtain the 

best value. (Kwapisz  et al., 2011) demonstrated that a window size of 20 seconds yielded less 

encouraging findings compared to segmenting the data into 10-second windows without 

overlapping. To find the optimal size, we evaluated a large range of sizes (1 second – 25 

seconds) with different overlapping intervals. The findings revealed that a window with a fixed 

length of 10 seconds and 50% overlapping produced good results. Because choosing a window 

length that was too small would not give adequate information to explain actions, this window 

was chosen. On the other hand, if the window size was too big, it might enable more than one 

sort of activity to be included in a data frame. This window duration was chosen to ensure that 

effective measurements captured every step of every behavior, maintaining the integrity of 

every activity. Table 2 below provides a breakdown of activity observations for testing from 

benchmarking UCI data. 
Table 2 - Benchmarking data frame 

Activity Data frame 

Standing 532 

Sitting 491 

Laying 537 

Walking 496 

Walking Upstairs 471 

Walking Downstairs 420 

Total 2947 

Feature selection: The features used to inform the activities must be carefully chosen to 

achieve high categorization efficiency. Prior to feature extraction, feature selection was 

performed. We examined a portion of each activity's data to choose features. It became evident 

to us that the values of the static states (Standing, Sitting) fell within a narrow range. Therefore, 

it would be straightforward to differentiate between static states and separate them from 

dynamic ones using the two properties of mean and median, which represent data concentration. 

 Additionally, compared to static states, the range of values for dynamic states like 

walking was wider. In order to ascertain the variation between the top and lowest values in these 

states, the range was selected. The standard deviation (SD) was an additional component 

utilized to determine the data dispersion of this activity in relation to the mean in order to 

capture the difference from a different state. 

 It is also evident that Standing and Walking had higher ax ≈ 0g values than Sitting and 

Walking, indicating that these activities could be characterized by RMS (root mean square). We 

also exploit the acceleration data to evaluate the importance of time-domain features, as shown 

in Fig. 2. 

 

Fig. 2. Feature Ranking Using Acceleration Sensor 

There are 23 features were selected as follows: mean_x, mean_y, mean_z, std_x, std_y, 

std_z, min_y, max_y, median_z, range_y, rms_x, rms_z, energy_x, energy_z, iqr_y, entropy_x, 

entropy_z, sma, correlation_yz, skew_y, skew_z, kurtosis_x, kurtosis_y. 
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Table 3 - Definition of features in x, y, and z axes 

Feature Meaning 

mean() Mean value 

std() Standard deviation 

mad() Median absolute deviation 

max() Largest value in array 

min() Smallest value in array 

iqr() Interquartile range 

entropy() Signal entropy 

sma() Signal magnitude area 

correlation() Correlation coefficient between two signals 

skew() Skewness of the frequency domain signal 

kurtosis() Kurtosis of the frequency domain signal 

After deciding to employ the 23 aforementioned features, we split the dataset into two 

segments: a test set comprising 40% and a training set including 60%, respectively. Next, we 

utilize the selected features to explore the training dataset and build the model. 

 

Estimation Method 

The classifier is crucial for activity classification. In addition to having a short training 

time and high accuracy, classifiers frequently have to satisfy real-time requirements. The feature 

set that was extracted in the previous phase will be used as input for the training and 

classification process. Classification techniques are widely used in machine learning 

applications. Using the Scikit-learn module, data analysis methods such as Gradient Boosted 

Decision Tree (GBDT), Support Vector Machine (SVM), Random Forest (RF), and k-Nearest 

Neighbor (KNN) will be used to evaluate the performance of the classification model. 

 There are different ways to measure this performance; the most widely used is the 

confusion matrix. Accordingly, a few common measurements are deployed for better 

recognition, such as accuracy, sensitivity, PPV, and NPV. The formulas for these measurements 

are shown below: 

          
     

             

 (1) 

             
  

      

 (2) 

    
  

     

 (3) 

NPV = 
  

         

 

(4) 

When an activity takes place and the model accurately predicts it, this is known as a True 

Positive (TP). When an activity doesn't occur but the model mistakenly predicts that it did, this 

is known as a False Positive (FP). When an activity occurs but the model is unable to anticipate 

it, this is known as a False Negative (FN). When an action doesn't occur and the model 

accurately predicts that it didn't, the result is a True Negative (TN). When assessing the 

categorization of a dataset with significant size differences between data classes, the use of two 

metrics the micro-average and the macro-average would be suitable. 

Micro-average: is defined according to the following formula with TPc, FPc, FNc , TNc being 

TP, FP, FN, and TN of class C, respectively: 
 

micro-average accuracy = 
∑           

 
   

∑                  
 
   

 

 

(5) 
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Macro-average is the average of the values of the classes: 

 macro-average accuracy = 
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4. Results and discussion 

Results 

We utilized GBDT, SVM, RF, and KNN for classification. The detailed results of RF are 

presented as follows: 

 Table 4 is the confusion matrix that provides a detailed overview of how well the 

classification model performed for each behavior. Overall, the model performs well in 

classifying laying activities, with all instances correctly predicted. However, there are some 

misclassifications observed in distinguishing between walking activities (upstairs and 

downstairs), as well as between sitting and standing. 
Table 4 - Confusion matrix for RF model 

Observed 

behavior 

Predicted behavior 

T
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L
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Walking 482 5 9 0 0 0 496 

Walking 

Upstairs 
33 431 7 0 0 0 471 

Walking 

Downstairs 
20 42 358 0 0 0 420 

Sitting 0 0 0 439 52 0 491 

Standing 0 0 0 43 489 0 532 

Laying 0 0 0 0 0 537 537 

Total 535 478 374 482 541 537 2947 

Table 5 provides insights into how well the RF model performs for each activity. Overall, 

the RF model demonstrates high accuracy and sensitivity across most activities, with perfect 

scores achieved for laying activities. However, there are slight variations in performance for 

activities such as walking downstairs, where sensitivity is comparatively lower.  
Table 5 - Performance indicator for each activity using RF model 

 Accuracy (%) Sensitivity 

(%) 

PPV 

(%) 

NPV 

(%) 

Walking 97.7 97.2 90.1 99.4 

Walking 

Upstairs 

97 91.5 90.2 98.4 

Walking 

Downstairs 

97.3 85.2 95.7 97.6 

Sitting 96.8 89.4 91.1 97.9 

Standing 96.8 91.9 90.4 98.2 
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Laying 100 100 100 100 

 

Table 6 - Performance indicator for each activity using RF model 

 Micro-average (%) Macro-average(%) 

Accuracy 92.8 97.6 

Sensitivity 92.8 92.5 

PPV 92.8 92.9 

NPV 98.6 98.6 

Fig. 3 provides a graph comparing the performance of different machine learning 

models—GBDT, SVM, RF, KNN, and RNN—on various activities: Walking, Walking 

Upstairs, Walking Downstairs, Sitting, Standing, and Laying. The y-axis represents accuracy, 

ranging from 93% to 100%.  We observe that SVM consistently performs the best across all 

activities, demonstrating robustness and high accuracy. RNN exhibits high variability, with 

excellent performance in Laying and Walking-related activities but significant drops in Sitting 

and Standing. RF and GBDT maintain relatively stable and high performance across all 

activities but show noticeable dips in Sitting and Standing. KNN generally has lower accuracy 

compared to other models, especially for Sitting and Standing, but performs well in Walking-

related activities and Laying. 

 

Fig. 3. Performance Of Models Using The Accuracy Indicator 

Fig. 4 illustrates the performance of models using the sensitivity indicator. Once again, 

SVM demonstrates consistent high performance across all activities, suggesting it is well-suited 

for this type of task, likely due to its effectiveness in high-dimensional spaces and its ability to 

find optimal hyperplanes for classification.  KNN's high accuracy in dynamic activities like 

Walking Downstairs and Laying can be attributed to its ability to capture temporal 

dependencies, making it effective for recognizing activities with distinct sequential patterns. 

However, the significant drop in accuracy for Sitting and Standing across all models indicates 

that these activities present a greater challenge for machine learning algorithms. This challenge 

may arise from the subtler and less dynamic nature of these activities, which can be harder to 

distinguish based on the features used. Further research could explore additional feature 

engineering or the incorporation of context-aware models to improve performance in these 

areas. 
 

Fig. 4. Performance of Models Using The Sensitivity Indicator 

Tables 7 and 8 display the evaluation metrics, including Accuracy, Sensitivity, Positive 

Predictive Value (PPV), and Negative Predictive Value (NPV), for five models. These metrics 

offer a comprehensive understanding of each model's performance in classifying physical 
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activities. SVM consistently outperforms other models across all metrics, demonstrating its 

robustness and reliability in activity classification tasks. Its high accuracy, sensitivity, PPV, and 

NPV indicate that it is well-suited for effectively distinguishing between different activities. 
Table 7 - Performance comparison among difference models using micro-average methods 

 

Evaluation method 

Classification Model (%) 

GBDT SVM RF KNN RNN 

Accuracy 92.6 96.5 92.8 90 91.7 

Sensitivity 92.6 96.5 92.8 90 91.7 

PPV 92.6 96.5 92.8 90 91.7 

NPV 98.5 99.3 98.6 98 98.3 

 

Table 8 - Performance comparison among difference models using macro-average methods 

 

Evaluation method 

Classification Model (%) 

GBDT SVM RF KNN RNN 

Accuracy 97.5 98.9 97.6 96.7 97.2 

Sensitivity 92.3 96.4 92.5 89.5 91.9 

PPV 92.8 96.7 92.9 90.4 91.9 

NPV 98.5 99.3 98.6 98 98.3 

 

Discussions 

Sitting and standing remain particularly challenging to classify due to their high intra-

class similarity, as both activities exhibit minimal acceleration and angular velocity changes 

compared to dynamic movements like walking or running. The current feature set may not 

sufficiently capture subtle differences, suggesting the need for additional postural stability 

features or higher-order statistical analysis. Moreover, sensor placement plays a critical role, as 

IMUs positioned on the wrist or ankle may not effectively detect posture transitions compared 

to placements on the chest or lower back, which better align with the body’s center of mass. 

Incorporating multi-sensor fusion, such as combining IMUs with pressure or depth sensors, 

could improve classification accuracy. Additionally, data augmentation techniques and hybrid 

approaches—such as integrating rule-based heuristics with deep learning models—may further 

enhance performance. Addressing these challenges would lead to a more robust and reliable 

classification of static postures, improving the model’s real-world applicability. 

Undoubtedly, feature selection is crucial to the recognition process. Numerous studies 

select a sizable number of features, such as forty-three in (Kwapisz et al., 2011; Catal et al., 

2015), and sixty-four in (Vavoulas, 2016), in order to enhance the rate of activity detection. 

Despite this, our current study achieved comparatively high recognition efficiency by 

employing a straightforward and efficient set of 23 statistical features along with the ideal 

sliding window size. Moreover, the categorization procedure in our work is performed in real 

time at the microcontroller (see Fig. 5). The classified results are displayed on the terminal (a 

smartphone), as depicted in Fig. 6. 
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Fig. 5. Our proposed real-time system 

 

 

Fig. 6. Real-time observation of HAR on the Smartphone 

While our algorithm may be suitable for older people or patients, it was not designed for 

use in groups of people performing dangerous jobs like firefighters, as these subjects' activities 

frequently involve more intense settings, including massive fires or thick smoke. Additionally, it 

appears that the requirement to fix the sensor's location on the waist limits the device's usability. 

 

5. Conclusions 

  This study establishes a recognition system with low cost, minimal computation time, and 

real-time response. The findings of this study confirm that a simple set of five features can 

effectively classify everyday behaviors, even when performed by different individuals. Test 

results reveal that when combining a 10-second window size with a classifier, the Random 

Forest (RF) classifier achieves higher overall accuracy compared to GBDT, SVM, and KNN. 



Thu et al …                                         Vol 6(2) 2025: 790-801 

800 

 

For future research, we aim to further develop and validate these initial findings by conducting 

experiments on more complex activities to assess the accuracy of the proposed model. We can 

also integrate data from the time and frequency domains, or extend feature extraction beyond 

statistical variables in the time domain to encompass other features like those in the frequency 

domain. Furthermore, experiments can explore machine learning models such as deep learning 

methods to find the most optimal solution for the classification problem's goal. Moreover, we 

intend to develop and expand systems that automatically classify more complex behaviors, 

providing more effective support and care for patients or the elderly in specific circumstances. 
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