
 Journal of Applied Engineering and Technological Science
 Vol 6(2) 2025: 829-848

829

PROVISIONING OF LIVE CONTAINER MIGRATION IN EDGE/CLOUD

ENVIRONMENTS: TECHNIQUES AND CHALLENGES

Radhwan B. Al-Bayram1*, Rawaa P. Qasha 2

College of Information Technology, University of Ninevah, Mosul, Iraq1

College of Computer Sciences and Mathematics, Department of Computer Sciences, University

of Mosul, Mosul, Iraq12

radwanbasher@uoninevah.edu.iq, rawa_qasha@uomosul.edu.iq

Received: 03 December 2024, Revised: 04 May 2025, Accepted: 05 May 2025

*Corresponding Author

ABSTRACT

Containers have become increasingly popular in the virtualization landscape. Their lightweight nature

and fast deployment behavior make them an efficient alternative to traditional hypervisor-based virtual

machines. In IoT applications and edge/cloud deployment, the live container migration can substantially

reduce computing system overheads by minimizing the migration time and transmitting minimum memory

pages from the source host without interrupting the service process. Until today, there has been a lack of

comprehensive research discussing live container migration in the IoT domain and investigating the

challenges of representing them in the edge/cloud environment. This survey presents cutting-edge articles

that involve a live container migration approach. This survey aims to boost current knowledge, identify

best practices, and highlight the challenges of live container migration in the IoT and edge/cloud

environments, which will contribute to the advancement of container technology, as well as the

optimization of deployment practices. The survey results indicate that selecting a suitable container

engine relies heavily on the workload characteristics in the edge/cloud environment, particularly given

the constraintions of live container migration. The survey highlights the direct and indirect challenges

that influence container migration and proposes machine learning and blockchain as potential solutions.

Keywords: Container, Live Container Migration, CRIU.

1. Introduction

The cloud-based computing model is primarily based on two types of virtualization

paradigms: H/W-level virtualization and OS-level virtualization(Bhardwaj & Rama Krishna,

2022). The first type is a virtual machine that behaves like a real computer with isolated

applications running on a separate OS and bare metal components. The virtualization level is

based on transparently encapsulating user applications in a high level of abstraction, which is

controlled by a virtual supervisor engine that bundles up the virtual machine management

operations(Doan et al., 2019)

The second type of virtualization is OS-level encapsulation or containerization. It isolates

the instances of the user-space domain in the same kernel and enables multi-user applications to

share the underlying hardware spaces without resource conflicts. The container encapsulates the

application data with all necessary package libraries and binary files in image file format so that

each image can be executed in different and independent environments. Therefore, this

technology can be arranged as a lightweight service and achieve faster initialization than a

virtual machine (Stephen et al., 2007).

Container features enable the development of application platforms that encourage high

performance in deployment, shutdown, upgrade, and migration within just a few milliseconds.

These and many other features have prompted the DevOps community to adopt container-based

techniques as an alternative to VMs in the edge/cloud era(Felter et al., 2014).

However, the essential feature considered besides virtual machines is the possibility of

being wholly isolated applications with solid security support, since virtualization in a virtual

machine is done at the hardware level rather than at the kernel level in the container.

Another type of virtualization model is a hybrid model with features of both the container

and virtual machine concepts (Dua et al., 2014).This survey focuses on state-of-the-art container

migration approaches, presents and discusses live container migration techniques and challenges

in edge/cloud environments, and employs IoT deployment as a case study.

mailto:radwanbasher@uoninevah.edu.iq
mailto:rawa_qasha@uomosul.edu.iq

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

830

Despite the recent adoption and provision of container services in cloud and edge

environments, the robustness and isolation features of this technology have led to its extensive

use across all cloud service platforms (public or private), edge services, and IoT deployments.

The integration of container-based support has revealed a multitude of scientific

challenges and complexities. These include security and authentication hurdles, implementing

workflows across diverse environments, adapting to varying network access, the necessity of

achieving uniformity in modeling the regulations that define the global structure of container

images, and managing the orchestration of multiple containers.

The lightweight and faster start-up behavior of containerized applications has been the

most prominent features that enable developers and the DevOps community to propose live

container migration through an application checkpointing scheme, which can allow shifting the

running application with underlying memory pages, CPU variables, and network status from

one host to another without interrupting user services. At the same time, the workload needs to

be balanced, or upgrade recovery is triggered in the system, or even during the maintenance

planning.

Live container migration in edge/cloud environments faces significant challenges,

including high downtime, security vulnerabilities, and network latency, particularly in latency-

sensitive IoT applications. Despite advancements, existing approaches lack comprehensive

solutions for minimizing migration overhead while ensuring service continuity in heterogeneous

edge/cloud settings. The increasing dependence on IoT and edge computing for real-time

applications, such as healthcare and smart cities, necessitates a seamless migration to avoid

service disruptions.

The rapid adoption of containerized applications in edge and cloud environments has

surpassed the development of effective live migration strategies. Existing studies often

emphasize cloud-centric deployments, overlooking the distinct constraints of edge computing,

such as limited bandwidth and diverse hardware. This survey examines the latest live container

migration approaches and consolidates these tools within an edge/cloud environment,

addressing essential challenges while offering relevant solutions.

The authors in (Bhardwaj & Rama Krishna, 2022) highlighted the advantages of

container-based migration compared to VM migration, illustrating its potential to enhance cloud

computing performance. The same previous concept applies here as well, where the study

evaluated comparisons in the cloud computing environment but did not assess its experiments

on the edge side. The study in (Solayman H.E. & Qasha R. P., 2023)examined the challenges of

migrating stateful applications for machine learning-driven services and proposed a Kubernetes-

based optimization framework; however, it overlooked the optimization challenges specific to

the edge environment for the same case study.

While the paper (Bellavista et al., 2024) highlighted the challenges of current CaaS rental

services in the cloud environment, where VM isolation necessitates a separate cluster for each

tenant, leading to resource overhead, it proposed a multitenancy approach within the Kubernetes

model. For edge computing, a framework is suggested that enables tenants to share a single

cluster with a common control plane, thus reducing overhead while maintaining workload

isolation. Although this study focuses on general CaaS challenges in cloud-edge environments,

it ruled out the possibility of container migration approaches. (Andrijauskas et al., 2024)

concludes that while CRIU offers potential benefits for high-performance computing, its current

limitations prevent full integration into batch systems like OSPool. Future developments are

needed to enhance its usability, particularly in containerized environments and GPU support.

(Yang et al., 2024) discusses the challenge of high startup latency in GPU-based serverless

computing, particularly for machine learning applications. The research highlights the

effectiveness of integrating parallel and on-demand restore strategies to optimize GPU

serverless workloads and proposes a multi-checkpoint mechanism using CRIU to increase

shared content across checkpoint images. (Yang et al., 2024) presents Wharf, a novel

framework for transparent and efficient live migration across heterogeneous hosts, which

improves performance, adaptability, and system resilience.

(X. Jin et al., 2024) explores container migration in edge computing within the industrial

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

831

Internet, focusing on reducing latency and enhancing reliability.(Meliani et al., 2025) focuses on

proactive lifecycle management for stateful microservices in multi-cluster containerized

environments. The authors introduce a zero-touch management (ZTM) framework that

integrates with Kubernetes and enables seamless stateful container migrations across clusters.
 In this survey, we will explore the intricacies of the container migration concept,

focusing specifically on live container migration. Our discussion will center on its

implementation in cloud and edge environments, highlighting advanced tools and addressing the

challenges present in these settings.

The main contributions of this survey can be summarized as follows:

1. The study offers a reinforcement approach besides the limited studies proposed in previous

literature regarding container live migration.

2. It promotes the idea of identifying the right tools to effectively execute and orchestrate the

migration of containers across various locations in edge and cloud environments.

3. Finally, this survey stands on the most critical challenges researchers face while

implementing live container migration in IoT applications and edge/cloud domains.

2. Literature Review

2.1. The Virtualization from VMs to Containers:

In cloud computing systems, virtualization technology is an essential foundation for

enabling cloud computing centers to transform their physical IT resources into equivalent virtual

resources that perform the same functional tasks; this enables cloud provider servers to initiate

multi-tenancy of the required resources along with other benefits such as portability and

scalability features. One type of virtualization model is known as a Type 1 virtualization system,

as in Figure 1. a. In this system, the virtual machine manager is installed directly into the bare

metal hardware of the host server; this layered structure gives the VM manager greater access to

resources compared with the following type (Type 2). However, this type requires compatibility

with tightly coupled hardware.

Another type of virtualization model is known as a Type 2 virtualization system Figure 1.

b. This type of virtualization refers to the installation of virtualization software on a pre-existing

operating system on a single host server that requires a virtual machine manager or hypervisor

that enables the system to install different operating systems on the same host machine, this

hypervisor is similar to the network bridge (br0) in the NIC but to convert VM requests to

system H/W. This model structure allows guest applications to be device-independent and have

a loosely coupled pattern (Doan et al., 2019).

These two types of virtualizations (Types 1 and 2) can be considered as H/W-level

virtualization, where each guest operating system has a pre-determined address for a specific

number of shared hardware by creating a grouped collection of logical resources such as

memory, CPU, network, and storage. The hypervisor in these VMs acts as an abstraction level

for the guest demand resources, which are represented by the guest-side application as a real

H/W resource.

Besides the H/W-based visualization, there exists another type, OS-level virtualization or

container-based virtualization. In this type, the visualization is done at OS-level typic, a really in

Linux kernel; this container application has lightweight features and the raped boot-up in

comparison to VMs system because it has direct plugging and patching interfaces within the

existing OS in the system, and the user application needs only the library and binary files

binding to be running (Dua et al., 2014). Table 1. represents the general features of container

versus VM.
Table 1 - Containers VS VMs Features Comparison

Feature Container VM

Weight and size Light, small Heavy, big

Resources utilization economical exhaustion

Isolated visibility kernel namespace level OS space level

Virtualization OS level H/W level

Basis OS single multiple, OS for each VM

Startup time millisecond minutes

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

832

Fig. 1. Hypervisor virtualization models: a. Type 1 virtualization. b. Type 2 virtualization.

The container can also be divided into two types depending on how the container engine

is installed in the host machine. A container engine is software that can accept the user request,

pull down the container image, and run the container instance from the user’s namespace

concept. One model structure of the container system is installing the container engine as a

wrapper layer for the underlying host's base OS (bar-metal), Figure 2.a. Another type of

container system model combines the VM approaches and container features by installing the

container engine as an abstraction layer for a Hypervisor-based container. Figure 2. b.

Each of the previous two deployment models has its own advantages and drawbacks,

which are outside the scope of this survey. However, it's important to mention that the hybrid

model, which consists of running containers on top of VMs, has advanced terminal security

isolation but with performance overhead. It is worth noting that the lightweight container

features, as well as the advantage of fast deployment and the economical consumption of

resources, make container migration feasible and reliable compared to the case of VM

migration, especially in edge/fog computing infrastructure where the computing power, device

resources, and network throughput are lower than those in cloud data centers (Qasha, 2023).

Fig. 2. Container Type Models, a. bar-metal Container Engine, b. Type 2 Hypervisor Virtualization Container

Hypervisor not included included, types 1 and 2

Provisioning and

scalability

slow real-time provisioning and scalability

Resources allocation Dynamic allocation Fixed allocation

Versatility support No, (only one kernel) Yes, (many OSs on top of one HW

machine)

 Host Server

Hardware

Hypervisor

Guest

 OS- 1

Guest

 OS- 2

Guest

 OS- 3

 Host Server

Host OS

Gues

t

Hardware

Hypervisor

Gues

t

Gues

t

 Host Server

Hardware

Container Engine

Containe

r

1

Containe

r

2

Containe

r

3

Host OS

 Host Server

Hardware

Hypervisor

Host OS

VM-OS

Container Engine

Co

1

Co Co

3

V
M

1

VM-

OS

Container Engine

Co

1

Co Co

3

V
M

2

VM-OS

Container Engine

Co

1

Co Co

3

V
M

3

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

833

2.2. Container Migration

Most of the features of container migration techniques are inherited from the previous

virtualization technique, VM migration. The migration technique is defined essentially as the

ability to migrate the running virtualization layers (VM or container) with their dependencies

from one physical host to another, with or without losing their states (Doan et al., 2019). The

first appearance of OS virtualization implementation was proposed in 2000 by a FreeBSD Jail

project through patching the Linux kernel (Kamp, n.d.). In 2005, a company named Virtuozzo

released OpenVZ as a container virtualization for resource management based on the Linux

checkpoint technique (Open Source Container-Based Virtualization for Linux., n.d.). IBM, in

2008, released LXC as a complete OS virtualization based on Linux, which depends on Cgroups

and namespace features(Linux Containers (LXC) Is an Operating-System-Level Virtualization,

n.d.). This point was the key to further progress and development in containers SW, which

contributed to the development of containers integrated platforms like Docker, Podman, and

IBM LXC, and after that, with container management and orchestration platforms like Docker

Swarm, Google Kubernetes, Apache Mesos, and Red Hat OpenShift.

In the case of VM/container migration, when an application running in a virtualization

package is shut down, the underlying system does not preserve its current state, and the user

service stops during the migration. This form of migration can be considered as a stateless/cold

migration. In cold migration, the downtime is equal to the total migration time, which represents

the total time of the container before it is ready to run. On the other hand, stateful/hot migration

preserves the current execution statuses (CPU logs, memory pages, file tree system, and

network configurations) of running applications, which are necessary to complete the migration

and resume the container on the destination host. The ability to migrate running VMs/containers

while preserving their state can significantly enhance the parameters factors of reliability,

availability, and fault tolerance of edge/cloud computing (Muhammad Waseem & Aakash

Ahmad, 2024).

Many works of literature have classified container migration types in various ways

depending on the research focus and outcomes. The survey in (He & Buyya, 2021) has

categorized container migration into two main types: cold and live migration. The last type has

been divided into three types: pre-copy, post-copy, and hybrid-copy of container migration.

Also, the survey focuses on container migration management and scheduling aspects in

edge/cloud environments.

In (Puliafito et al., 2020b) the authors classified four types of container migration, which

are cold migration, pre-copy migration, post-copy migration, and hybrid container migration,

and they evaluated the impact of container migration on QoS using an augmented reality

application based on the MQTT protocol in fog IoT services. The study in (Singh & Singh,

2022) is done with the same container migration classification as (Puliafito et al., 2020b). Also,

they proposed a method to minimize network overhead by reusing memory states during

container migration and reducing data transmission by only transferring updated memory pages

by employing memory prediction based on both PSO and ANN schemas. The survey in (Kaur et

al., 2022) followed an identical approach to the previous classification of container migration

and further added the stateless and stateful types as primary root types depending on the live

services of the container during migration. Also, the survey classified the container server

distribution and how its performance is reflected by the container’s host placement over

geographical network deployment (edge, fog, core, and cloud).

 Previous articles addressed various types of container migration, but they did not claim

to cover the most advanced live container migration deployment tools and solutions. This

survey focuses on the latest live container migration approaches and consolidates these tools in

an edge/cloud environment, addressing critical challenges and providing relevant solutions. The

accumulation of these classifications is shown in Figure 3, which can be a reference for future

scientific citations.

In Figure 3, the top layer on the container, in general, can be categorized based on the

placement of the container, which is if the migration of the container will be done in an edge/fog

environment or the container deployment will be in a cloud environment which often in this

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

834

case the migration will be done through pods or a cluster of containers. The granularity type

represents whether the application depends on a single container to be migrated or on multiple

containers performing as cluster models that integrate the container orchestration tools to

monitor the group of related containers as one pod. Also, the container migration can be for

stateless and stateful containers, as explained later. The final type of container migration

depends on the overall loading size of images and packaging needed during the migration

process. When the cold migration is enabled, the processes need to migrate the container and the

base image as a single step, which poses a heavy burden on the network, while in the hot

migration, only the application statuses be migrated with network synchronization between the

source host and target and depending one of the migration schemas (pre-copy, post-copy, or

hybrid).

When the processes of container migration start by halting all processes in the guest

container, and the user loses the connection to the services offered, this situation of migration

refers to the cold, non-live, or non-interactive migration. On the other hand, in the hot, live, or

interactive migration, the guest container remains running while executing the migration

algorithm, and the user services are not affected by migration. The latter condition of container

migration has been divided into three types (pre-copy migration, post-copy migration, and

hybrid migration). In this survey, we focus on the live migration type.

All mentioned features of container migration, especially the lightweight size of

containers and the speed of their provisioning time, motivated interested researchers and the

DevOps community in commercial and enterprise businesses to carry out container services for

IoT-integrated solutions and with cloud center implementations. In this research, we focus on

reviewing the scientific studies that have utilized the container migration models in IoT and

edge/cloud environments and presenting the state-of-the-art techniques and the tools that have

been implemented for live container migration. Then, we discuss the main challenges facing the

developers in this field.

2.3. Container Deployment and Live Migration:

In this section, we explain how containers are deployed in the placement of a cloud

computing center or the placement of an edge/fog environment, and we demonstrate the

portability of containers in both cases.

2.3.1. Container Deployment in Cloud-native Computing Environment:

The National Institute of Standards and Technology (NIST) (Mell & Grance,

2011)defines cloud computing as “a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources”. Cloud computing is a

type of distributed computing built on a high-performance central data center and designed

essentially as privileged resource sharing and dynamic demand of multi-tenancy requests.

Virtualization techniques, such as VMs and containers, have been adopted in the cloud data

center to efficiently manage cloud resources, great elasticity, and auto-scalability, fulfill

demands on large storage and computing resources, and achieve an isolated environment

alongside users' applications.

In Platform-as-a-Service (PaaS) for a cloud environment, the deployment of lightweight

services like containers for packaging and orchestration implementation is a key issue (Pahl et

al., 2017)Recently, many cloud service providers, such as Amazon AWS, Microsoft Azure,

Google Cloud, and RedHat OpenShift, have built cluster-structured layering systems for

incorporating and orchestrating container services for commercial and enterprise productions.

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

835

Fig. 3. Container Migration Types

In cloud-native container orchestration services, it relies, in almost all cases, upon

stateless containerization virtualization services. To conduct migration processes for these

services, cloud elasticity proposed some sorting of storage volume replications and redundant

virtual network functions, like Cloud-native Network Function CNF. The mentioned situations

make the possibility of handling the live container migrations practically challenging, and

facing issues of difficulty and complexity.(Lee et al., 2024)

Despite the unique features of the cloud environment, such as central storage for big data,

high computing power, and container orchestration administrations, as well as resource

availability adaptation, however, there are issues of limitations of long-time latency, especially

in the case of IoT applications, and also, the security risk issues for the users in the public cloud

model (Abdullah & Hasan, 2023). These issues with other events led to the emergence of a new

direction of distributed computing systems called Edge/Fog computing (Bonomi et al., 2012).

2.3.2. Container Deployment in Edge/Fog Computing Environments:

In 2012, Cisco first released the name “Fog Computing” as a collection of computing

nodes with storage and routing capabilities, including gateways and computers, all functioning

as a middleware layer between IoT devices and cloud computing.(Bonomi et al., 2012). The fog

computing definition, according to (Yi et al., 2016) is: “a geographically distributed computing

architecture with a resource pool consisting of one or more ubiquitously connected

heterogeneous devices (including edge devices) at the edge of the network and not exclusively

seamlessly backed by cloud services”. It is evident that the current trend in cloud-native

deployment, especially within the edge/fog ecosystem, is shifting from VM-based virtualization

to container-based virtualization solutions due to their offered advantages and properties. The

fog computing environment offers a promising solution for geo-distributed node deployments

where the user nodes are placed near the clusters of heterogeneous fog servers. In practice, this

approach contributes to migrating microservices and container packages for IoT applications,

where the speed of communication response and the latency-sensitive services are key

challenges. Edge computing aims to force applications, data processing, and other services away

from the central cloud data center to the edge network belonging to the user's device network in

order to save network bandwidth or manage delay sensitivity in IoT applications (Abdullah &

Mohammed, 2022).

Many research studies in the literature have presented promising prospects as well as

challenges encountered when deploying and evaluating container solutions in Edge/Fog

computing environments. In this context, it is considered that live container migration is a

promising mechanism for networks of Edge/Fog environments. This ability can help overcome

numerous Edge/Fog computing challenges, such as offloading computing to other hosts locally

situated at the network's edge and near the user's location, expanding computing resources in

fog computing, or handling the mobility issues on mobile edge computing (Hadeed & Abdullah,

2022).

The IoT environment architecture has been built essentially from small devices (sensors

and actuators) connected wirelessly throughout PAN or LAN topology networks. Later, this

environment was integrated into the cloud platform (public or private) for further processing

and cleaning of the uploaded IoT big data, and achieved cloud resource utilization and storage

management solutions (Solayman H.E. & Qasha R. P., 2023). Although this traditional

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

836

approach of provisioning IoT objects in cloud computing has achieved many gains, the need for

short latency, as well as the processing of real-time data near their source, forces the necessity

of pre-processing of uploading data in edge/fog sites. Figure 4 shows the edge computing

paradigm at the bottom level in the three tiers: Cloud-Fog-Edge hierarchy as presented in (Kaur

et al., 2022) as in Figure 4.

The emergence of SW virtualization, especially the lightweight containers, prompted the

developers of IoT solutions to integrate their lightweight single-board technologies like

Raspberry Pi that are placed at the edge of the network with lightweight container solutions to

execute sensor responses and actuators processing with the real-time application in IoT fields,

while at the same time maintaining interconnectivity with fog and cloud computing by

migrating containers when needing to utilize data orchestration platforms and also employing

big-data storage and clean/filtered data management (Pallewatta et al., 2023; Puliafito et al.,

2020a).

Fig. 4. 3-Tiers Structure of Cloud-Fog-Edge

3. Containers Live Migration Schemes

Currently, live container migration is a valuable tool in edge and cloud environments. In

edge computing, containerization, and microservices migration are employed for real-time

sensitive applications such as healthcare systems, video streaming, online gaming, traffic light

management, and smart vehicle services (Pahl & Lee, 2015). On the other hand, commercial

cloud infrastructure and cloud service providers such as AWS, Google, Amazon, and Red Hat

have been offering containerization management and orchestration tools through a new

approach called Container as a Service CaaS model (Senel et al., 2023). The live container

migration is concerned with moving the running container from one host to another, with its

status, and without needing to restart the process on the destination site. Keeping source

memory status and paging resources is a vital thing that must be preserved and synchronized

during the live migration. This happens with the condition that the user is unaware of the change

of server site or the switch of the location of a service provider.

The evaluation of the migration processes is affected by two critical factors: the first one

is the downtime, which represents the period between the stop-freeze stage of the container in

the source host and the point of reactivation in the target host. During this period, the

application services are unavailable to the user. The second factor is the total migration time,

which involves the start of triggering the migration processes up until they are finished.

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

837

Live migration of VMs and containers is classified essentially into two main types, with a

third type that combines the features of them. These algorithms are categorized depending on

how many times (at minimum) they perform the process of checkpointing and synchronization

for the memory status during the migration processes. The pre-copy migration algorithm

performs two checkpoints (memory snapshots) and two synchronization processes (Clark et al.,

2005) while the post-copy approach performs a single checkpoint and synchronization process

(Hines et al., 2009). The hybrid algorithm has been designed to overcome the weaknesses of the

two traditional approaches and to utilize their strengths(Sahni et al., 2012).

3.1. Pre-Copy Migration

In the pre-copy live container migration, or so-called iterative migration, the memory

pages are migrated iteratively. During the pre-copy phases, the container remains in the running

mode at the source host until the last pre-dumping memory, which follows the container

freezing stage. After the final dumping of memory pages has been migrated, the container can

be started on the target host from the freezing point. The pre-copy migration technique depends

basically on two checkpoints and two synchronizing stages. The algorithm works with six

stages as shown.

Stage 1: 1st checkpoint, the memory pages of the container are checked out with the checkpoint

tool, and the container is left running.

Stage 2: 1st synchronization, the images of the 1st checkpoint are synchronized to the

destination.

Stage 3: Comparison, counting the dirty memory pages (updated memory pages compared to the

1st stage).

Stage 4: 2nd checkpoint, checking out the dirty pages with reset container status.

Stage 5: 2nd synchronization, the images of the 2nd checkpoint are synchronized to the

destination and halt the container.

Stage 6: Restore, restoring the images from the previous step in the destination host, and the

container resumed running as before the 2nd checkpoint.

With pre-copy migration, the service provided by the container is live until stage 4 (2nd

checkpoint), and the procedure has the option to repeat iterations 1 to 4 until it reaches the

smallest interrupted time. The total migration time and the downtime are two metrics used to

measure the performance of pre-copy migration. The performance of this approach depends on

the application running in the container and the network connection. If the application creates

more memory-dirty pages, that will influence the performance of the migration process, so

choosing the application or job task to implement pre-copy container migration is a key issue.

The main advantages of this approach basically form two features: the high availability, which

drew from the ability to keep the container alive for a more extended period before the freezing

stage without affecting the services provided, and the ability to reduce the total cost of migration

overhead by migrated a small chunk of data iteratively, however, the pre-copy procedure is not

deterministic since we can’t guess how much the size of memory pages will be needed to

migrate.

3.2. Post-Copy Migration

The post-copy live container migration, or so-called lazy migration, has been proposed as

an alternative to the pre-copy algorithm. The essential idea of this approach is initially forced to

stop the container in the source host, then migrate only the CPU states from the source so that

the container can be directly started running in the destination site. Then the destination can pull

down the memory pages from the source as needed. The post-copy algorithm works with one

checkpoint and synchronization method as shown below.

The pos-copy algorithm needs eight stages to complete its job:

Stage 1: When deciding to migrate the running container, first, the container will be suspended

and proceed to the checkpoint. However, post-copy is different from the pre-copy

technique, where the images of the post checkpoint contain minimal information about

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

838

the execution container, which leads to running the container directly on the

destination host.

Stage 2: Synchronize the previous images to the destination host.

Stage 3: The container is switched immediately to resume at the destination, starting from the

minimal status images.

Stage 4: When the running container in the destination has access to nonresident memory, the

algorithm throws a fault image.

 Stage 5: The daemon running in the destination container handles the image faults and sends a

request to pull down the lost pages from the source host.

Stage 6: The suspended original container receives the request, retrieves the lost images, and

sends them to the destination.

Stage 7: The destination consumes the faulty images and continues running the application until

it finds another lost image.

Stage 8: The post-copy technique repeats steps (4 to 7) until finished.

Post-copy, thus, ensures that each memory page is migrated only once. This avoids the

duplicate migrated overhead of pre-copy. Also, despite the complexity of the post-copy

algorithm, the total migration time can be practically reduced if the resuming container in the

target host does not frequently access the non-synchronized memory pages, where the

performance of the migration container could decrease due to the frequent memory fault recall

procedure. On the other hand, the biggest drawback of the post-migration approach is

represented by its unavailability since the application services initially terminate in the source

host, so when the target host crashes during the post-migration processes, this also leads to the

system crashing.

In comparing the total migration time and downtime for the previous two container

migration schemes, it is observed that the pre-copy approach has a shorter total migration time

than the post-copy approach. This is because, in the pre-copy approach, migration depends on

the migrated dirty pages during the downtime phase, while the post-copy approach attempts to

migrate all non-pageable states. On the other hand, the post-copy approach has the lowest

downtime overhead as it prepares the container's CPU status for migration and defers the

memory status to the pull-down stage. In contrast, the pre-copy approach involves many

iterative migrations of memory pages, which take more time to complete. Choosing a suitable

application in container migration is an essential key for both migration techniques, where

write-intensive applications very much influence the performance of the pre-copy approach, and

read-intensive applications influence the post-copy(Ma et al., 2019).

3.3. Hybrid Migration

The hybrid migration is a live container migration built to combine the advantages of

both pre-/post-copy migrations. Actually, this technique is developed by combining a post-copy

algorithm with preceding pre-copy stages. The scientific features that have been achieved by the

combination done in the hybrid approach consist of both availability and reliability, where the

availability feature, which is obtained from the pre-copy model, generates much more

information about running container status, which assists post-copy processes after resuming the

container in the destination host. Meanwhile, the post-copy model achieves reliability by

reducing the number of pages that must be downloaded on demand.

Table 2 summarizes the strengths and weaknesses of the previous three methods for

container live migration, assessed based on availability, efficiency, migration overhead,

complexity, service determinism, and applicability.

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

839

Table 2 - Comparison between pre-copy, post-copy, and hybrid container migration

4. Container Live Migration Techniques

 For container migration, many applications and tools have been released to conduct the

integrity on running container migration management for edge/cloud environments, especially

for IoT virtualization models that assist services workload for many critical issues like load

balance, storage redundancy, fast recovery on disaster and farther for improving the reliability

and availability. In this context, we're focusing on the most commonly used tools and the

popular SWs used in live container migration, where the migration of services from source host

to destination while the container is remained running. All containers' running statuses are

reserved in the target machine, keeping the migration time and downtime as short as possible

without impacting user services or underlying applications.

One of the popular and powerful integrated tools for live container migration is called

Linux Checkpoint and Restore in Userspace CRIU (Linux Checkpoint/Restore In Userspace,

n.d.). In the next section, we briefly present the CRIU design and then discuss up-to-date

container live migration applications and container management packages integrated with

CRIU.

Checkpoint and Restore in Userspace CRIU

The CRIU (pronounced kree-oo) is a project started with initial release (v0.1) in 2012 as

an implementation to checkpoint and restore running applications in the Linux namespace, and

in 2013, it was released with the Linux kernel (v3.11)(Linux Checkpoint/Restore In Userspace,

n.d.). Pavel Emelyanov proposed the 1st integration with the container platform with the

OpenVZ project (Checkpoint-Restore_p.Haul_ Live Migration Using CRIU, n.d.). CRIU is a

Linux tool that can check (freeze) any running process or vitalization-based application (VM or

container) and dump their running status (memory page maps, open sockets, open files, etc.) as

a collection of files in local host storage, which can later restore and resume these applications

from the point of previous checking. Today, CRIU is the de facto and most successful tool for

live container migration. This tool can retrieve the kernel file system from the process path,

which contains the necessary information about the memory page map, child processes, and file

descriptions. Then CRIU injects a parasite code into appropriate spaces in the process addresses

to run the CRUI subroutine as a daemon process and to dump the memory contained as page

maps files using the process's address space and tracing mechanism using the system-call

ptrace. Unfortunately, this tool doesn’t offer any facility for synchronizing files to another host

in real time, and we need an external tool to do so.
From the viewpoint of the process that has been checked, it seems like normal behavior,

and no additional operations are needed to support the CRIU procedure. This feature enables

CRIU to check any Linux process. Figure 5 represents the main processes in the CRIU checking

procedure. The container can be restored in the target host by calling the system function fork().

CRIU can create a new child process as a copy of the parent process, restore (unfreeze) the

dump file, and re-run the application or container to the previous status as before checking.

Criteria Pre-Copy Post-Copy Hybrid

Availability Guaranteed Unguaranteed
Moderate, workload
dependent

Efficiency
Good for stable workloads,
poor for dynamic ones.

Good for dynamic
workloads, slow if many

page faults.

Balances both, less
optimal for extremes.

Migration

Overhead

Low for stable memory, high

for dynamic memory.

Low for dynamic workloads,

high with faults.

Moderate, varies by

workload.

Complexity
Simple, overhead with dirty

pages.

Simple transfer, complex in

fault handling.
Most complex

Service

Determinism
Predictable for stable loads

Predictable and variable

performance.
Fairly predictable

Applicability Heavy workloads Latency-sensitive workload Multi workload

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

840

Among the core features in the Linux kernel that the container has utilized in migration

processes are the user namespace and cgroups. Namespace is a technique in the Linux kernel

developed by E. Biederman in 2002 using C lang. (Linux Namespaces, n.d.). This feature

provides a resource isolation layer for the container engine for each newly created container. By

implementing a namespace, each process in the container has its own instance access to the

available resources, and the object instances inside the container have visibility only in the

space of the container instantiation and not outside. Currently, there are eight kinds of isolation

in the namespace (Cgroup, IPC, Net, Mount, PID, Time, User, and UTS). When the container

migrated, its namespace also migrated to the other side, and the restore procedure employed the

namespace features to perform the container restoration.

Fig. 5. CRIU Checkpoint Procedure

ON the other side, Linux Control Group Cgroup is a feature that limits resources like

CPU cores, memory preservation, and I/O access for the hierarchical structure of process

groups. Cgroup can nominate the type and quality of resources individually for each group of

processes, so that it can effectively assist resource management in the container. CRIU utilizes

this feature in the container freezing phase by individually freezing all resources in each Cgroup

and then unfreezing them to the original state after container migration (Cgroup-Freezer, n.d.).

Many container applications and container management tools have integrated CRIU

facilities for container live migration. In the next sections, we briefly demonstrate four examples

of open-source container engine tools, two as OS-level or system-level container virtualization

(OpenVZ and LXD) and two as application-level container virtualization (Docker and Podman),

and we focus on how they implement CRIU for container live migration.

4.1. OS-Level Container

The OS-level container is similar to the virtual machine in the concept of versatility

usage, where, in user space isolation, the system can install and run multiple applications inside

the OS container. OpenVZ and LXD are two examples of this category of container platforms.

On the other side, at the application level of the container, the system can run only a single

Running Process

 ٌ R

Paused Process

ptrace()

Pause the process &

collect necessary data

Inject Parasite Code

Running Process

 Parasite Code ٌ R Released the process

& running under the

parasite code daemon

CRIU Dump

Running Process

 Parasite Code ٌ R Dump process

memory status as files

to local disk

Remove Parasite

Code

Running Process

 ٌ R

Pause()

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

841

application or service. This is done even when the system is running multiple processes in the

container, but they still belong to a single process or application. Docker and Podman are two

examples of this type.

4.1.1. OpenVZ

Open Virtuozzo (OpenVZ) is an open-source OS-level container virtualization for Linux.

It was produced by Virtuozzo in 2005. OpenVZ has a command-line interface CLI and web-

based container management WebVS. In OpenVZ, the virtualization system (guest OS) that

implements the running container must be the same as the core OS, which is the Linux kernel.

OpenVZ started with a checkpoint tool for container migration in the Virtuozzo kernel and then

implemented CRIU in the Linux kernel. CRIU features are fully integrated with OpenVZ

version 7.0, released in 2016, with features of user namespace and Cgroup, where the previous

migration processes had been done in kernel space, which produces a lot of restrictions (Mirkin

OpenVZ et al., 2008). OpenVZ is perfect for isolated workload environments, but it demands a

custom kernel, which limits flexibility. In OpenVZ, the command vzmigrate with the option –

online can perform the live container migration.

4.1.2. LXD

LXD is another type of OS-level container virtualization that wraps the Linux container

runtime LXC (LXC was released in Linux kernel 2.6.24 in 2008). LXD also supports building

an instance of a virtual machine. LXD has daemon facilities with a REST API to develop and

manage the container(Run System Containers with LXD, n.d.). LXD also has a command line

interface lxc that provides the user with flexibility and compatibility, and a web-based GUI

called LXD UI, but it’s still under experimental features when writing this article. To do a live

(stateful) container migration in LXD using the integrated CRIU features, the CRIU feature

must be enabled first. The current documentation of LXD mentions that only basic containers

(non- systemd containers and without attachment of network devices) can be live migrated

smoothly. Otherwise, the system needs to stop the container before LXD can checkpoint it(How

to Move Existing LXD Instances between Servers, n.d.).

4.2. Application-Level Container

At the application level of the container, the system can run only a single application or

service. This is done even where the system is running multiple processes in the container, but

they still belong to a single process or application. Docker and Podman are two examples of this

type.

4.2.1. Docker

Docker started in 2015 as a project named Open Container Innovation OCI carried out by

the Linux Foundation. Docker is a client-server application-level container engine with three

main parts: the Docker server, the Docker API REST, and the Docker CLI. The Docker server

or Docker Daemon, is responsible for managing and maintaining the container's life cycle from

start to end and responding to API requests. The API REST is the interface used to

communicate with the Docker daemon. The Docker CLI is the user interface environment. The

new version of Docker has a GUI version called Docker Desktop. Docker also has a cloud-

based distributed-registered Hup platform for public and private container image repositories.

Docker run time engine started by integrating with a lightweight Linux container runtime

program called runc. Because of the complexity and the autoconfiguration lacking in the runc

functions, Docker got its own runtime API independent from the runc environment called

libcontainer. For integrating with CRIU, Docker has produced checkpoint and restore features in

experimental mode for migrating containers since Docker 1.13 in 2017, but with limited

features. To migrate a stateful container after restating the Docker daemon in experimental

mode, we need to create a checkpoint ID, and then we can start the migration with the command

start.

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

842

4.2.2. Podman

Podman (Pod MANager) is another type of application-level container management

produced by Red Hat, and it launched in 2018. Podman is open-source with compatibility with

the Open Container Invention OCI which supports other types of containers and image

generation engines like Docker and CRI-O, and it relies on an OCI-compliant container runtime

(runc, crun, runy, etc) to interface with the host operating system and create the running

containers. Podman is a daemonless run-time engine that enables the user to run Podman

commands in a rootful or rootless privilege permissions (What Is Podman, n.d.)The CLI

commands in Podman are very familiar with the Docker CLI commands. Podman can manage

containers, images, volumes, and pods, which are groups of similar containers.

In 2019, Adrian Reber conducted a project for integrating Podman with CRIU to enable

stateful container migration between different systems by implementing the checkpoint and

restore features in the running containers (Adrian Reber, n.d.)To migrate the status in the

running containers from one host to another, the subcommand checkpoint of the command

podman container is used. Table 3 provides a summary comparing the four previous types of

container engines.
Table 3 - Comparing of four container engines

Feature OpenVZ LXD Docker Podman

Type System container System container Application container
Application

container

Running

Type
Running as a full OS

Lightweight VMs and

containers

Runs as a daemon

process

Runs as a single

process

Performance High Lightweight Lightweight Lightweight

Security
Restricted, good

isolation
Strong isolation

 Risk with the root

daemon

Rootless, enhanced

security

Scalability High
Supports clustering up

to 50 servers

integrates with

Kubernetes and Swarm

Kubernetes-ready,

integrated

Storage Snapshots and NFS
Flexible storage

backends
External volumes External volumes

OS Support
Linux only, requires

OpenVZ kernel
Linux only

Linux, Windows,

macOS

Linux, Windows,

macOS

Proprietor Virtuozzo Canonical Docker Inc. Red Hat

 Live container migration is a cornerstone of modern edge/cloud computing, enabling

flexibility, reliability, and efficiency in dynamic environments. Advancements such as CRIU

optimizations, hardware acceleration, and edge-specific frameworks have made migration faster

and more robust, addressing industry demands for scalability and low latency. The migration of

running processes and live containers offers numerous advantages, particularly for edge and

cloud applications, considering the work environment in container live migration. Among these

features are: resource optimization and workload balance, fault tolerance and reliability, node

mobility in edge computing, hardware accelerations, and automation and policy management in

orchestration cloud platforms.

5. Container Live Migration Challenges and Open Issues Directions

It is evident that the current trend in cloud-native deployment, especially within the

edge/fog implementations, is shifting from VM-based virtualization to container-based

virtualization solutions due to their offered advantages and properties, such as light load,

scalability, and fast start-up. However, the road is still not paved enough to do so, and many

challenges and obstacles have to be addressed. Some of these challenges - we focus on the live

migration of the containers - are inherited from VM-based approaches, and others come from

the containers ' build structure themselves. In this context, the previous literature studies in this

field have reviewed and discussed these challenges, proposed methods to overcome them, and

left the door open for further research questions.

The overview of these challenges mainly depends on where exactly the containers are set

up, i.e., whether they are deployed in distributed edge/fog environments or hosted in the central

cloud computing structures. This overview follows the same challenges as the live container

migration. For example, in challenging situations where the container's live migration needs to

be triggered in edge/fog applications, like handling the expected failure in edge servers site

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

843

hosting the single type of container's virtualization deployment, or on the other side, the

example of challenges facing the needing to auto-provisioning the stateless or stateful containers

that are installed in multi-pods clustered structure that requires the containers to be migrated in

order to conduct auto-scaling and self-management in K8s-like cloud services.

From a general perspective, the challenges and obstacles that face the execution of live

container migration, regardless of where the containers are running, can be generally classified

into two main directions. The challenges that arise directly from the algorithm type and the

software tool implemented to support container live migration (CRIU, pre-copy, post-copy, and

hybrid approaches). Additionally, there are other challenges indirectly related to container live

migration, such as security issues, network type and its capacity, the heterogeneous environment

of the source and target of live migration, and the need for automated and dynamic container

scalability.

5.1. Direct Challenges in Live Container Migration

When performing a live migration of a stateful container, it's crucial to consider the size of the

memory data snapshots configured to be migrated, which includes the running status of the

CPU, memory data, and dynamic configurations of the file system. The size of the memory

snapshot significantly impacts the overall performance of container live migration since it is

influenced by the total migration time. Larger memory sizes take more time to migrate, leading

to increased latency and potentially affecting user utilization consistency.

For these challenges, many literary studies have proposed solutions for reducing the memory

migration size. The authors in (Wu et al., 2017) proposed genetic-based or machine learning-

based schemes for memory dirty page prediction in order to reduce the total amount of memory

pages throughout the iterative process of memory dumping and reduce the download time of

container migration. The study in(Lu & Jiang, 2023) addressed the problem of paging

duplication in the pre-copy container migration algorithm. It proposed a prediction schema

based on the locality principle of the random forest model. Also, they implemented an

incremental compression model to reduce the size of data transmission. In (Nie et al., 2017), the

researchers proposed an optimization model for the pre-copy container algorithm by reducing

the number of migrated memory pages. The optimization method follows the Gray-Markov

model, which minimizes the total migration time.

The authors in (Junior et al., 2020)utilize the layering facility in the container structure by

exploiting the OverlayFS in the Docker layered structure. The enhancement in this approach

comes from the ability to reduce the total migration time by migrating just the updated writable

container layer and then pending the base readable layers by synchronizing the file system

between the source and target host. The same approach is followed in (Machen et al., 2017).

The authors also addressed the user mobility challenge when the user shifted to new location

services and proposed an algorithm for synchronizing encapsulated base image layers to the

potential additional closer server.

Other factors that directly impact the overall performance of container live migration are

detailed in (Feitosa et al., 2025). The paper discusses several challenges associated with

container migration strategies in edge and cloud environments, including resource consumption,

network bandwidth, and the complexity of stateful containers during live migration. It also

suggests an optimized migration strategy to balance efficiency, downtime, and resource

consumption.

5.2. Indirect Challenges in Live Container Migration

The indirect challenges involved in stateful live container migration do not arise from

factors that affect the internal structures of the tools or algorithms implementing the live

migration functions. Instead, they are influenced by outside factors or foreign circumstances,

such as security vulnerabilities, client movement out of service, connection bandwidth

constraints, multi-cloud deployments, and resource limitations in IoT edge devices, which must

be taken into account by the admin manager to distribute container load balancing between

those operating in the central cloud and those operating in the decentralized edge center.

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

844

All the previous factors significantly impact the performance of live container migration.

In this context, we are specifically focusing on two key aspects that we consider to be the most

influential in ensuring optimal performance for live container migration tasks: the security

challenges and the challenges of implementing live container migration in multi-cloud systems.

Quite a few studies have addressed the security challenges in the live migration of

virtualization-based applications. Most of them included those related to the migration of VM

applications, which is outside the interest of this survey. At the same time, only a few of them

have addressed the security challenges in live stateful container migration and, precisely, in

edge/fog environments. In contrast, some studies have suggested implementing application-

level encryption and authentication schemes throughout container migration, while others

propose integrating with third-party solutions, like the integration with a Blockchain

environment, which grants a high level of container security guarantees.

In (Hosseinzadeh et al., 2016) an improved protocol is proposed for live migration of

vTPM-VM, which includes a TPM-based integrity check policy and a specific cryptographic

scheme to protect data during migration of container-based virtualization. In (Azab et al., 2016)

the ESCAPE framework is proposed as an MTD mechanism for monitoring container migration

against malicious behavior. ESCAPE leverages CRIU to seamlessly capture snapshots of the

container's state during migration, empowering it to swiftly restore the container to a secure

state upon detecting any attack. The study referenced in (H. Jin et al., 2021) introduces the

DSEOM framework as an enhancement to the MTD protocol aimed at safeguarding the target

system from potential attacks. To assess its effectiveness, the proposed method involves

implementing live migration of Docker containers. The authors in (Ma et al., 2019) proposed

utilizing the layered structure in the storage system of the container structure to minimize the

overhead of file system synchronization. To reduce the security risks of offloading services in

edge servers, the authors implemented an isolation layered structure by isolating different

services in different Docker containers.

In some related literature, the decentralized networks Blockchain has been proposed as an

integration framework with container allocations to enhance the security challenges in

container-based implementation. The main contribution in (Antonio Marques et al., 2023) is

introducing a framework called Clustered Event2ledger, which monitors Docker container

environments using a consortium Blockchain to ensure data integrity, reliability, and

availability. The framework collects the container and its service events, sends them to a

Hyperledger Fabric Blockchain through signed transactions, and provides a distributed, tamper-

proof repository for auditing. In (Farahmandian et al., 2024) the authors delved into the critical

issue of fault tolerance in distributed systems, focusing on Byzantine faults and how security

vulnerabilities influence the overall system. They proposed an integration model of container-

based applications with the Blockchain principle to achieve reliability and availability, reduce

resources, and increase fault tolerance in the system. The article (Sun et al., 2020) proposed a

system that utilizes Blockchain technology to improve container cloud security. It aims to

prevent the upload of malicious container images and to verify container image integrity using

Blockchain, ensuring that the images are not tampered with. For Blockchain integration, the

proposed approach uses Ethereum smart contracts. The system maintains a decentralized and

tamper-proof record of image security profiles, which enhances reliability and transparency.

The article (Nawar A. Sultan & Rawaa Putros Qasha, 2023) presents a blockchain-based

framework for securely monitoring vehicle traffic flow systems using containers in Docker.

The previous solutions are intended to work with individual independent containers or small

groups of containers working together as a service provider in an IoT edge environment.

Container management and orchestration platforms such as Docker Swarm, Kubernetes,

Portainer, and OpenShift are valuable open tools for automating container orchestration and

managing enterprise pod clusters of containers across inter-cloud system federation.

Considering the intricate design structure of these tools, most container service solutions are

tailored for stateless container provisioning. Consequently, numerous challenges emerge when

attempting to implement live migration of stateful container types. The article (Bellavista et al.,

2024) discusses the challenges of migrating stateful services in Industry 4.0 scenarios,

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

845

particularly for ML-driven applications, and presents a Kubernetes-based framework to

optimize this process. The authors developed an enhanced Kubernetes stateful service migration

mechanism that minimizes downtime by separating the application state into hot and cold states

and preparing the target node in advance.

The framework CloudHopper proposed in (Benjaponpitak et al., 2020) empowers live

migration of stateful containerized applications across AWS, Google Cloud, and Microsoft

Azure, featuring advanced pre-copy optimization. This framework is engineered to deliver

multi-cloud support, interdependent live container migration, rapid migration times, secure data

transfer, uninterrupted client connections, and automated migration processes. In this context,

the Ansible platform /www.ansible.com(Red Hat Ansible Automation Platform, n.d.) also

supports the automated configuration of active container migration in a multi-cloud deployment.

IPsec VPN tunnels under TCP/HTTP with a load balancer are used to ensure consistency and

redirect the network traffic between the source cloud and the destination during container

migration. The paper in (Swetha et al., 2025) highlighted the lack of existing research that

discussed how resource utilization can influence overall performance in existing cloud container

orchestration solutions and emphasized the importance of optimizing resource allocation in

containerized cloud environments.

6. Conclusion

Live migration based on the container virtualization technique is a powerful and reliable

strategy in distributed computing systems, whether provisioning in a cloud data center or on

near-edge devices. The rapid and lightweight deployment of these containers significantly

enhances application efficiency and performance, particularly when load-balancing is active on

servers or when immediate responses to system failures are required. Implementing the pre-

copy algorithm for container migration, as part of the CRIU approach, stands out as the most

significant and practical method for conducting container migration in an edge/cloud

environment. This study has sought to enhance understanding of the advanced techniques and

tools utilized in this field. Avoiding security breaches and performing live container migration

between multi-device architecture or multi-cloud combinations are among the most critical

challenges facing researchers in this domain. Collaborating to establish a unified vision,

consensus on a standard container design structure, and effective consultation during the

migration process are essential keys for the future success of this promising technique.

References

Abdullah, D. B., & Hasan, B. T. (2023). HRRMLQ: Container scheduling algorithm on edge

nodes cluster. AIP Conference Proceedings, 2834(1). https://doi.org/10.1063/5.0171070

Abdullah, D. B., & Mohammed, H. H. (2022). DHFogSim: Smart Real-Time Traffic

Management Framework for Fog Computing Systems. ICOASE 2022 - 4th International

Conference on Advanced Science and Engineering, 60–65.

https://doi.org/10.1109/ICOASE56293.2022.10075605

Adrian Reber. (n.d.). Container migration with Podman on RHEL. Retrieved June 22, 2024,

from https://www.redhat.com/en/blog/container-migration-podman-rhel

Andrijauskas, F., Sfiligoi, I., Davila, D., Arora, A., Guiang, J., Bockelman, B., Thain, G., &

Wurthwein, F. (2024). CRIU -- Checkpoint Restore in Userspace for computational

simulations and scientific applications. http://arxiv.org/abs/2402.05244

Antonio Marques, M., Christian Miers, C., Rodrigues Obelheiro, R., Antonio SImplico Jr, M.,

Marques, M. A., Miers, C. C., Obelheiro, R. R., & Simplício Jr, M. A. (2023). Clustered

event2ledger: Docker event traceability using consortium Hyperledger blockchains.

https://doi.org/10.21203/rs.3.rs-2761768/v1

Azab, M., Mokhtar, B., Abed, A. S., & Eltoweissy, M. (2016, November 9). Toward Smart

Moving Target Defense for Linux Container Resiliency. IEEE 41st Conference on Local

Computer Networks (LCN), Pp. 619-622. IEEE. https://doi.org/10.1109/LCN.2016.106

Bellavista, P., Dahdal, S., Foschini, L., Tazzioli, D., Tortonesi, M., & Venanzi, R. (2024).

Kubernetes Enhanced Stateful Service Migration for ML-Driven Applications in Industry

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

846

4.0 Scenarios. 2024 IEEE Annual Congress on Artificial Intelligence of Things (AIoT),

25–31. https://doi.org/10.1109/AIoT63253.2024.00015

Benjaponpitak, T., Karakate, M., & Sripanidkulchai, K. (2020). Enabling Live Migration of

Containerized Applications Across Clouds. In IEEE INFOCOM 2020-IEEE Conference

on Computer Communications, Pp. 2529-2538. IEEE.

Bhardwaj, A., & Rama Krishna, C. (2022). A Container-Based Technique to Improve Virtual

Machine Migration in Cloud Computing. IETE Journal of Research, 68(1), 401–416.

https://doi.org/10.1080/03772063.2019.1605848

Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, & Sateesh Addepalli. (2012). Fog Computing and

Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, Pp. 13-16, 66.

Cgroup-freezer. (n.d.). Retrieved May 3, 2024, from

https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt

checkpoint-restore_p.haul_ Live migration using CRIU. (n.d.). Retrieved May 3, 2024, from

https://github.com/checkpoint-restore/p.haul

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., & Warfield, A.

(2005). Live Migration of Virtual Machines. In Proceedings of the 2nd Conference on

Symposium on Networked Systems Design & Implementation-Volume 2, Pp. 273-286.

Doan, Tung V., Giang T. Nguyen, Hani Salah, Sreekrishna Pandi, Michael Jarschel, Rastin

Pries, & and Frank HP Fitzek. (2019). Containers vs Virtual Machines: Choosing the

Right Virtualization Technology for Mobile Edge Cloud. In 2019 IEEE 2nd 5G World

Forum (5GWF), pp. 46-52. IEEE,.

Dua, R., Raja, A. R., & Kakadia, D. (2014). Virtualization vs containerization to support PaaS.

Proceedings - 2014 IEEE International Conference on Cloud Engineering, IC2E 2014,

610–614. https://doi.org/10.1109/IC2E.2014.41

Farahmandian, M., Foumani, M. F., & Bayat, P. (2024). Improving fault tolerance in LinuX

container-based distributed systems using blockchain. Cluster Computing.

https://doi.org/10.1007/s10586-024-04279-9

Feitosa, L., Barbosa, V., Sabino, A., Lima, L. N., Fé, I., Silva, L. G., Callou, G., Carvalho, J.,

Leão, E., Nguyen, T. A., Rego, P., & Silva, F. A. (2025). A comprehensive performance

evaluation of container migration strategies. Computing, 107(2).

https://doi.org/10.1007/s00607-025-01423-0

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014). An Updated Performance

Comparison of Virtual Machines and Linux Containers. In Computer Science.

http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Hadeed, W., & Abdullah, D. B. (2022). Load Balancing Mechanism for Edge-CloudBased

Priorities Containers. International Journal of Wireless and Microwave Technologies,

12(5), 1–9. https://doi.org/10.5815/ijwmt.2022.05.01

He, T., & Buyya, R. (2021). A Taxonomy of Live Migration Management in Cloud Computing.

http://arxiv.org/abs/2112.02593

Hines, M. R., Deshpande, U., & Gopalan, K. (2009). Post-Copy Live Migration of Virtual

Machines. Hines, Michael R., Umesh Deshpande, and Kartik Gopalan. “Post-Copy Live

Migration of Virtual Machines.” ACM SIGOPS Operating Systems Review 43, No. 3: 14-

26.

Hosseinzadeh, S., Laurén, S., & Leppänen, V. (2016). Security in container-based virtualization

through vTPM. Proceedings - 9th IEEE/ACM International Conference on Utility and

Cloud Computing, UCC 2016, 214–219. https://doi.org/10.1145/2996890.3009903

How to move existing LXD instances between servers. (n.d.). Retrieved April 15, 2025, from

https://documentation.ubuntu.com/lxd/en/stable-5.21/howto/move_instances/

Jin, H., Li, Z., Zou, D., & Yuan, B. (2021). DSEOM: A Framework for Dynamic Security

Evaluation and Optimization of MTD in Container-Based Cloud. IEEE Transactions on

Dependable and Secure Computing, 18(3), 1125–1136.

https://doi.org/10.1109/TDSC.2019.2916666

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

847

Jin, X., He, S., & Chen, Y. (2024). Container migration for edge computing in industrial

Internet with joint latency reduction and reliability enhancement. Scientific Reports,

14(1). https://doi.org/10.1038/s41598-024-77086-2

Junior, P. S., Miorandi, D., & Pierre, G. (2020). Stateful Container Migration in Geo-

Distributed Environments. Proceedings of the International Conference on Cloud

Computing Technology and Science, CloudCom, 2020-December, 49–56.

https://doi.org/10.1109/CloudCom49646.2020.00005

Kamp, P.-H. (n.d.). Jails: Confining the omnipotent root.

Kaur, K., Guillemin, F., & Sailhan, F. (2022). Container placement and migration strategies for

Cloud, Fog and Edge data centers: A survey. International Journal of Network

Management 32, No. 6.

Lee, J., Kang, H., Yu, H. J., Na, J. H., Kim, J., Shin, J. H., & Noh, S. Y. (2024). MDB-KCP:

persistence framework of in-memory database with CRIU-based container checkpoint in

Kubernetes. Journal of Cloud Computing, 13(1). https://doi.org/10.1186/s13677-024-

00687-9

Linux Checkpoint/Restore In Userspace. (n.d.). Retrieved June 4, 2024, from

https://criu.org/Main_Page

Linux Containers (LXC) is an operating-system-level virtualization. (n.d.). Retrieved May 25,

2024, from https://en.wikipedia.org/wiki/LXC

Linux namespaces. (n.d.). Retrieved June 8, 2024, from

https://en.wikipedia.org/wiki/Linux_namespaces

Lu, Y., & Jiang, Y. (2023). A Container Pre-copy Migration Method Based on Dirty Page

Prediction and Compression. Proceedings of the International Conference on Parallel

and Distributed Systems - ICPADS, 2023-January, 704–711.

https://doi.org/10.1109/ICPADS56603.2022.00097

Ma, L., Yi, S., Carter, N., & Li, Q. (2019). Efficient Live Migration of Edge Services

Leveraging Container Layered Storage.

Machen, A., Wang, S., Leung, K. K., Ko, B. J., & Salonidis, T. (2017). Live Service Migration

in Mobile Edge Clouds. IEEE Wireless Communications 25, No. 1 (2017): 140-147.

https://doi.org/10.1109/MWC.2017.1700011

Meliani, A. E., Mekki, M., & Ksentini, A. (2025). Resiliency focused proactive lifecycle

management for stateful microservices in multi-cluster containerized environments.

Computer Communications, 236. https://doi.org/10.1016/j.comcom.2025.108111

Mell, P. M., & Grance, T. (2011). The NIST definition of cloud computing.

https://doi.org/10.6028/NIST.SP.800-145

Mirkin OpenVZ, A., Kuznetsov OpenVZ, A., & Kolyshkin OpenVZ, K. (2008). Containers

checkpointing and live migration. In Proceedings of the Linux Symposium, Vol. 2, Pp. 85-

90.

Muhammad Waseem, & Aakash Ahmad. (2024). Containerization In Multi-Cloud

Environment: Roles, Strategies, Challenges, and Solutions for Effective Implementation.

IEEE International Conference on Program Comprehension, 2022-March, 36–47.

Nawar A. Sultan, & Rawaa Putros Qasha. (2023). Blockchain-Based Framework for Secure

Monitoring of Vehicles Traffic Flow System.

Nie, H., Li, P., Xu, H., Dong, L., Song, J., & Wang, R. (2017). Research on optimized pre-copy

algorithm of live container migration in cloud environment. Communications in

Computer and Information Science, 729, 554–565. https://doi.org/10.1007/978-981-10-

6442-5_53

Open source container-based virtualization for Linux. (n.d.). Retrieved May 25, 2024, from

https://openvz.org/

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud Container Technologies: a State-

of-the-Art Review. IEEE Transactions on Cloud Computing 7, No. 3 (2017): 677-692.

Pahl, C., & Lee, B. (2015). Containers and clusters for edge cloud architectures-A technology

review. Proceedings - International Conference on Future Internet of Things and Cloud,

FiCloud, 379–386. https://doi.org/10.1109/FiCloud.2015.35

Al-Bayram & P. Qasha … Vol 6(2) 2025: 829-848

848

Pallewatta, S., Kostakos, V., & Buyya, R. (2023). Placement of Microservices-based IoT

Applications in Fog Computing: A Taxonomy and Future Directions. ACM Computing

Surveys 55, No. 14s (2023): 1-43.

Puliafito, C., Virdis, A., & Mingozzi, E. (2020a). Migration of Multi-container Services in the

Fog to Support Things Mobility. Proceedings - 2020 IEEE International Conference on

Smart Computing, SMARTCOMP 2020, 259–261.

https://doi.org/10.1109/SMARTCOMP50058.2020.00058

Puliafito, C., Virdis, A., & Mingozzi, E. (2020b). The Impact of Container Migration on Fog

Services as Perceived by Mobile Things. Proceedings - 2020 IEEE International

Conference on Smart Computing, SMARTCOMP 2020, 9–16.

https://doi.org/10.1109/SMARTCOMP50058.2020.00022

Qasha, H. E. (2023). On the use of container-based virtualisation for IoT provisioning and

orchestration: a survey. In Int. J. Computing Science and Mathematics (Vol. 18, Issue 4).

Red Hat Ansible Automation Platform. (n.d.). Retrieved September 28, 2024, from

https://www.redhat.com/en/technologies/management/ansible

Run system containers with LXD. (n.d.). Retrieved June 11, 2024, from

https://canonical.com/lxd

Sahni, Shashank, & Vasudeva Varma. (2012). A Hybrid Approach To Live Migration Of

Virtual Machines. International Conference on Cloud Computing in Emerging Markets

(CCEM), Pp. 1-5. IEEE.

Senel, B. C., Mouchet, M., Cappos, J., Friedman, T., Fourmaux, O., & Mcgeer, R. (2023).

Multitenant Containers as a Service (CaaS) for Clouds and Edge Clouds. IEEE Access,

11, 144574–144601. https://doi.org/10.1109/ACCESS.2023.3344486

Singh, G., & Singh, P. (2022). A Container Migration Technique to Minimize the Network

Overhead with Reusable Memory State. International Journal of Computer Networks and

Applications, 9(3), 350–360. https://doi.org/10.22247/ijcna/2022/212560

Solayman H.E., & Qasha R. P. (2023). On the use of container-based virtualisation for IoT

provisioning and orchestration: a survey. 18(Int. J. Computing Science and

Mathematics), 299–311.

Stephen S, Herbert P, & Marc E. (2007). Container-based Operating System Virtualization:

AScalable, High-performance Alternative to Hypervisors. EuroSys ’07: Proceedings of

the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, 412.

Sun, J., Wu, C., & Ye, J. (2020). Blockchain-based Automated Container Cloud Security

Enhancement System. Proceedings - 2020 IEEE International Conference on Smart

Cloud, SmartCloud 2020, 1–6. https://doi.org/10.1109/SmartCloud49737.2020.00010

Swetha, R., Thriveni, J., & Venugopal, K. R. (2025). Resource Utilization-Based Container

Orchestration: Closing the Gap for Enhanced Cloud Application Performance. SN

Computer Science, 6(3). https://doi.org/10.1007/s42979-024-03624-4

What is Podman. (n.d.). Retrieved June 22, 2024, from https://docs.podman.io/en/latest/

Wu, T. Y., Guizani, N., & Huang, J. S. (2017). Related Dirty Memory Prediction Mechanism

for Live Migration Enhancement in Cloud Computing Environments. Journal of Network

and Computer Applications, 90, 83–89. https://doi.org/10.1016/j.jnca.2017.03.011

Yang, Y., Du, D., Song, H., & Xia, Y. (2024). On-demand and Parallel Checkpoint/Restore for

GPU Applications. SoCC 2024 - Proceedings of the 2024 ACM Symposium on Cloud

Computing, 415–433. https://doi.org/10.1145/3698038.3698510

Yang, Y., Hu, A., Zheng, Y., Zhao, B., Zhang, X., & Quinn, A. (2024). Transparent and

Efficient Live Migration across Heterogeneous Hosts with Wharf.

http://arxiv.org/abs/2410.15894

Yi, S., Hao, Z., Qin, Z., & Li, Q. (2016). Fog computing: Platform and applications.

Proceedings - 3rd Workshop on Hot Topics in Web Systems and Technologies, HotWeb

2015, 73–78. https://doi.org/10.1109/HotWeb.2015.22

