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ABSTRACT  

The quality of manual methods for assessing the ripeness of cocoa pods is subjective and varies from one 

person to another because of the intense labor required and variation of light and background conditions 

within the field. This research implemented an automated classification approach for cocoa ripeness 

classification utilizing Vision Transformer (ViT) with Shifted Patch Tokenization (SPT) and Locality Self 

Attention (LSA) to improve classification accuracy. The model proposed in this research achieved an 

accuracy of 82.65% and a macro F1 score of 82.71 on the exam with 1,559 images captured under 

varying illumination backgrounds and complex scenes. The model also proved better than baseline CNN 

architectures such as VGG, MobileNet, and ResNet in identifying visually progressive stages of ripeness 

and demonstrated greater generalization in cocoa ripeness classification. The findings of this research 

indicate the benefits of reducing manual intervention with careful inspection without compromising 

quality assurance standards in cocoa production. This work demonstrates new ways of applying 

transformer models to address computer vision problems in agriculture which is a step towards precision 

and smart farming. 

Keywords: Cocoa Ripeness Classification, Vision Transformer, Shifted Patch Tokenization, Locality Self 

Attention, Agricultural Computer Vision. 

 

1. Introduction  

In 2021, Indonesia stood third in global cocoa production with 728,046 tons produced 

annually(Food and Agriculture Organization (FAO), 2023). The cocoa sector is a sub-strategic 

industry in Indonesia as more than 95% of Sulawesi, Sumatra and Papua’s cocoa production 

comes from smallholder farmers(International Cocoa Organization (ICCO), 2022). These 

farmers have very low uptake of mechanisation and agricultural technology, thus applying 

traditional methods. This leads to a range of quality issues as well as post-harvest inefficiency. 

One of the most important steps in cocoa processing is harvesting. The degree of pod 

matureness is a key factor in determining the fermentation quality, chemical composition, and 

flavor profile of chocolate products. If harvested too early, beans have a high tendency of being 

under fermented resulting in a bitter taste. Milder over mature pods are more susceptible to 

being fungal infested, internally germinated, or enveloped in mucilage, thus degrading both 

bean quality and yield(Siregar et al., 2023). This accentuates the need to maintain certain 

standards and thus, highlights the importance of timely and accurate cocoa matureness 

assessment. 

There is still no automated classification system available for mature classification in 

Indonesia since it is typically done manually through observation of the pod surface color. This 

method relies on the use of human labor which is prone to human error especially in fields 

where lighting and scenery are inconsistent. There is a need to design a classification system 

that works accurately within the constraints of the real world and can decrease post-harvest loss. 

Other fruits have seen a positive outcome with using computer vision and deep learning for 

detecting maturity levels. Previous works included the use of color-based features papaya with 

k-nearest neighbor (k-NN)(Suban et al., 2020), support vector machines (SVM) for 

banana(Juncai et al., 2015), oil palm(Siregar et al., 2023) and durian with convolutional neural 

networks (CNNs)(Kharamat et al., 2020). CNNs are poorly suited for tasks involving modeling 
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long-range dependencies and tend to overfit smaller, unbalanced training datasets, which is 

typical for agricultural datasets. Moreover, CNN-based models often fail to perform adequately 

in uncontrolled scenarios. With these reasons, this research aims to develop an image-based 

cocoa maturity classification system using ViT architecture.  ViT treats images as sequences of 

patches and employs self-attention clustering to embody patterns. This method aids in the 

interpretation of color gradients, texture, and pod surface details better(Dosovitskiy et al., 2020). 

To improve model performance on small datasets and in complicated environmental conditions, 

two complementary modules are added. Shifted Patch Tokenization (SPT), which rearranges the 

spatial order of patches and simulates data augmentation(Lee et al., 2021). Locality Self-

Attention (LSA) enhances attention while minimizing focus on non-local feature tokens and 

strengthens local feature emphasis(Zhou et al., 2021). 

The effectiveness of Transformer-based models has been explored in agriculture for fruit 

grading, weed and crop classification, and plant disease detection, achieving high performance 

even with limited data (Charco et al., 2024; Chitta et al., 2024). In the specific context of cocoa, 

Lopes et al. (Lopes et al., 2022) demonstrated the potential of deep learning for cocoa bean 

grading using CNNs. However, ViT-based models for cocoa matureness classification remain 

underexplored and lack integration of modules that enhance data efficiency. To better 

understand the matureness classes of cocoa fruits targeted in this research, Figure 1 illustrates 

the visual differences across the Immature, Mature, and Overmature stages. Each stage shows 

distinct characteristics in pod surface color and texture, providing observable cues for 

automated classification systems. 

 

Fig. 1. Cocoa fruit matureness stages: (a) Immature, (b) Mature, (c) Overmature. 

The objective of this research is to develop an image-based cocoa fruit matureness 

classification model using the Vision Transformer architecture, enhanced with Shifted Patch 

Tokenization (SPT) and Locality Self-Attention (LSA), in order to improve classification 

accuracy under limited-data and field-based image conditions. The contributions of this research 

are summarized as follows: 

a. Proposing a novel ViT-based approach for classifying cocoa matureness stages from real-

environment images. 

b. Integrating SPT and LSA to address challenges related to small datasets and subtle feature 

distinctions. 

c. Demonstrating that the proposed method outperforms baseline models such as ViT, ResNet, 

and MobileNet in terms of accuracy and class-wise performance. 

d. Providing a practical solution to assist cocoa farmers in making harvesting decisions and 

improving post-harvest outcomes through automation. 

 

2.  Related Works 

Image-based classification is a fundamental approach in smart agriculture, supporting 

applications such as matureness prediction (El Sakka et al., 2024; Khaki & Wang, 2019), 

disease diagnosis (Liu & Wang, 2021), and yield estimation (Khaki et al., 2020). CNNs have 

been widely used in classifying crops, detecting diseases, and grading fruit maturity due to their 

strong spatial feature extraction capabilities (El Sakka et al., 2024; Liu & Wang, 2021). For 

example, MobileNet and EfficientNet have been applied to lightweight edge devices (Paneru et 

al., 2024; Yasin & Fatima, 2023), while ResNet and Inception architectures were effective in 
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complex background conditions (Khaki et al., 2020; Liu & Wang, 2021). Initial work relied on 

handcrafted color features classified by traditional algorithms like SVM and k-NN (Ala’a & 

Ibrahim, 2024; Alimjan et al., 2018; Joshi et al., 2023), but deep learning has since replaced 

them with robust end-to-end CNN pipelines (El Sakka et al., 2024). Transfer learning with 

pretrained models such as VGG16 and ResNet50 has improved generalization under limited 

data conditions (Khaki et al., 2020; Khaki & Wang, 2019). Despite these advances, CNNs often 

overfit small datasets and struggle to capture global context (Brigato & Iocchi, 2021; Gal & 

Ghahramani, 2016; Yu et al., 2019). 

Vision Transformers (ViTs) have gained attention as a potential solution by modeling 

images as sequences of patches and applying self-attention for global information encoding 

(Dosovitskiy et al., 2020; Khan et al., 2022). ViTs have outperformed CNNs in leaf disease 

classification (El Sakka et al., 2024), matureness prediction (Ergün, 2025), and weed detection 

via UAV (Reedha et al., 2022; Zhao et al., 2023). However, standard ViTs are data-hungry and 

computationally intensive (Lee et al., 2021). To address this, structural improvements like 

Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) have been proposed (Lee 

et al., 2021; Zhou et al., 2021). SPT introduces overlapping local views, while LSA narrows the 

attention field for improved locality modeling (Zhou et al., 2021). These methods have enabled 

ViTs to generalize better on small datasets while maintaining global sensitivity (Lee et al., 

2021). In agricultural domains, ViTs with SPT/LSA have shown promise in high-resolution 

tasks such as plant health monitoring (Borhani et al., 2022; De Silva & Brown, 2023) and 

tomato leaf recognition (Nahak et al., 2025). UAV-based ViT applications have also reported 

improved segmentation in irregular lighting (Zhao et al., 2023). ViTs are further enhanced by 

explainability tools like Grad-CAM (Kulkarni et al., 2022; Mishra & Malhotra, 2024). Recent 

researches confirm ViTs are competitive or superior to CNNs in grape quality grading (Pothen 

& Nuske, 2016; Shimazu et al., 2024), banana defect detection (Ergün, 2025), and rice crop 

classification (Ulukaya & Deari, 2025). Several works integrated multispectral inputs into ViT 

pipelines for more robust modeling under climate variability (Lin et al., 2023; Rad, 2024). 

Others employed multi-task learning to combine maturity prediction and yield estimation in 

parallel(Lin et al., 2023). 

While these advancements are encouraging, there remains a lack of ViT-based 

researches targeting cocoa fruit classification. Existing CNN approaches focus on post-harvest 

bean sorting (Eric et al., 2023; Essah et al., 2022) and often exclude the critical field-stage 

matureness identification. No prior work to date has evaluated ViTs with SPT and LSA on real-

world cocoa fruit images. To bridge this gap, our research introduces a ViT-SPT-LSA model 

specifically designed for cocoa matureness classification in uncontrolled environments. This 

architecture balances global attention with local detail sensitivity to enhance performance with 

limited image data. 

 

3.  Research Methods 

3.1. Dataset Preprocessing 

Our research used a dataset consisting of 1,559 labeled images of cocoa fruits captured 

under natural lighting conditions with varying backgrounds, angles, and matureness levels. The 

dataset includes three maturity classes: immature (45.73%), mature (23.04%), and overmature 

(31.23%). Input images were resized to 224x224 pixels to match the size of Vision Transformer 

(ViT) input layer. Data augmentation techniques such as horizontal flipping, rotation, brightness 

manipulation, and zoom were applied to increase training set diversity and reduce overfitting. 

All images were normalized using ImageNet mean and standard deviation. We used 1000 

images for training set and 559 images for testing set. In the training process, we took 10% of 

the training set for validation process. The class-wise distribution across each subset is 

presented in Table 1. 
Table 1 - Class distribution across dataset subsets. 

Label Training Set Validation Set Testing Set 

Immature 405 45 263 

Mature 180 20 159 

Overmature 315 35 137 
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Total 900 100 559 

 

 

3.2 Model Architecture 

Figure 2 shows the design of the system that was built in this research. The system starts 

with image input. The first process in the system is patch embedding which breaks the image 

into a collection of patches. From the collection of existing patches, an encoding process is then 

carried out to produce a series of features. This series of features is then processed by the 

Transformer Encoder in the form of multihead Attention blocks. The output from the 

Transformer Encoder is a feature that will be used as input for the Softmax Classifier process at 

the end of the system. 

 

Fig. 2. Proposed Cocoa Ripeness Classification System 
 

3.2  Vision Transformer 

The Vision Transformer (ViT) architecture was selected due to its ability to model long-

range dependencies via self-attention, which is beneficial for detecting subtle matureness cues 

spread across fruit surfaces. CNNs, although effective in local pattern recognition, struggle with 

capturing global context, especially in images with diverse lighting and background conditions. 

To enhance ViT performance in limited-data settings, we integrated two architectural 

improvements: Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA). SPT 

modifies the patch embedding process by shifting input images in fixed directions before 

tokenization. This encourages the model to capture more diverse and local contextual patterns 

within the input, thereby improving feature representation. Meanwhile, LSA restricts the self-

attention mechanism to only focus on local neighborhoods rather than the entire image, 

embedding inductive bias that is useful for learning localized features. This modification 

reduces overfitting and increases model robustness in datasets with limited training samples. 

Patch size was empirically set to 16x16 pixels, balancing spatial granularity and computational 

efficiency. This patch size ensures sufficient detail is retained while maintaining compatibility 

with standard ViT pretraining checkpoints. 

Figure 3 depicts the architecture of Vision Transformer (ViT), in which an input image is 

separated into a series of fixed-size patches, linearly embedded, and coupled with positional 

encoding before being sent through several transformer encoder layers.  These layers are made 

up of multi-head self-attention and feedforward networks, which record global visual 

dependencies and enable robust categorization. 
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Fig. 3. Vision Transformer architecture (M.-H. Guo et al., 2022). 

 

3.3 Shifted Patch Tokenization (SPT) 

Vision Transformer needs a large amount of data in the training process. This is a 

problem if the number of data provided is limited. To overcome the problem, we used shifted 

patch tokenization (Emmamuel et al., 2022). This process enrich the variation of data by 

shifting the patching process and added it to the training set. Figure 4 depicts the Shifted Patch 

Tokenization (SPT) mechanism, in which input images are spatially shifted in multiple 

directions (e.g., up, down, left, right). Each shifted image is then tokenized, and the resulting 

tokens are aggregated to produce a richer patch representation. This enhances the model’s 

capacity to learn local variations in spatial structures. Figure 5 shows the example of SPT result. 

 

Fig. 4. Shifted Patch Tokenization process(Emmamuel et al., 2022). 

 
 

Fig. 5. Example of SPT result. 
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3.4 Locality Self Attention (LSA) 

Another technique to overcome the limited dataset problem is by using Locality Self 

Attention (LSA) (Q. Guo et al., 2019). LSA improves the distribution of attention scores by 

determining the temperature parameters of the softmax function. The learnable temperature 

scaling enables ViT to determine the softmax temperature throughout the learning phase. The 

softmax temperature is low, which sharpens the score distribution. As a result, the learnable 

temperature scaling refines the distribution of attention scores. In addition, diagonal masking is 

applied to eliminate self-token relations by suppressing the diagonal elements of the similarity 

matrix generated from Query and Key computations. This technique ensures that inter-token 

relationships receive higher importance by excluding self-token relations from the softmax 

calculation. Diagonal masking achieves this by assigning −∞ to the diagonal elements, directing 

the Vision Transformer’s attention mechanism to prioritize other tokens rather than focusing on 

itself. This masking enhances the relative attention scores between distinct tokens, leading to a 

sharper distribution of attention scores. Consequently, LSA strengthens the locality inductive 

bias by encouraging the Vision Transformer’s attention to concentrate on local regions. Figure 6 

shows a schematic comparison between standard self-attention and Locality Self-Attention 

(LSA). In the standard version, attention is computed globally across all patches. In contrast, 

LSA applies a localized attention mask, limiting the scope to adjacent patches and encouraging 

the model to focus on spatially relevant regions, which is particularly beneficial in small 

datasets. 
 

Fig. 6. Comparison Of Standard Self-Attention and LSA. 

 

3.5 Experiment Setup 

The model was trained using Adam optimizer for 100 epochs with an initial learning rate 

of 1×10-4 and batch size of 32. Initial experiments indicated that using a learning rate of 1×10-4 

resulted in faster convergence and less overfitting. The number of epochs of 100 was used 

because for epochs above 100, the system performance tends to be stable. The batch size of 32 

was chosen to balance the training speed with the available computing power. The Adam 

optimizer was chosen because it combines AdaGrad and RMSprop so that it can adjust the 

learning rate for each parameter, improving convergence and performance especially on noisy 

and sparse data. A learning rate scheduler with cosine annealing was employed. Cross-entropy 

loss was used as the objective function. Evaluation metrics included accuracy, precision, recall, 

and F1-score to assess classification performance across all classes. Training was conducted on 

a workstation equipped with an NVIDIA RTX 4070 GPU (12GB VRAM), 12.6 GB RAM, and 

an Intel Core i9 processor. Average training time per epoch was approximately 90 seconds. The 

model achieved convergence by the 60th epoch, after which performance saturated. 

 

4.  Results and Discussion 

 In this section, we present a detailed analysis of the experimental results, including 

training performance, class-specific performance analysis with a confusion matrix, comparative 

evaluation, cross-validation results, and ablation study. First, we can see the training 

performance of Vision Transformer and our proposed method respectively on Figure 7 and 8. 

The effect of utilizing SPT and LSA in the training process can be seen by comparing the 

training and validation accuracy. We can see that by combining Vision Transformer with SPT 

and LSA, the model obtained a higher validation accuracy (about 75%) than by using only 

Vision Transformer (about 60%). The model also achieved the highest validation accuracy 

faster than by using only Vision Transformer. Because the gap between training and validation 

accuracy was smaller, the combination of Vision Transformer with SPT and LSA had a better 

performance in handling overfitting problem. 
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Fig. 7. Training and validation accuracy of Vision Transformer. 

 

 

Fig. 8. Training and Validation Accuracy Of Our Proposed Method. 

For the testing performance, our proposed ViT-SPT-LSA model was evaluated using four 

metrics: accuracy, precision, recall, and F1-score, across three cocoa matureness classes: 

immature, mature, and overmature. The model achieved an overall accuracy of 82.64% and a 

macro-average F1-score of 0.82.92. The proposed model showed marked improvements in the 

classification of the mature class, which often exhibits overlapping visual traits with the 

overmature class. The inclusion of SPT and LSA enabled the model to better generalize to these 

subtle inter-class differences, outperforming the baseline ViT in both precision and recall. 

Class-wise performance based on the confusion matrix in Figure 9 shows: 

a. Immature: Precision = 0.89, Recall = 0.79, F1-score = 0.84 

b. Mature: Precision = 0.74, Recall = 0.89, F1-score = 0.81 

c. Overmature: Precision = 0.86, Recall = 0.82, F1-score = 0.84 

 

Fig. 9. Confusion matrix of the testing result. 
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While most misclassifications happen between the immature and mature classes, these 

findings validate the model's strength in identifying immature and overmature pods. Despite 

class overlap, the confusion matrix in Figure 9 verifies that 207 of 263 immature pods, 142 of 

159 mature pods, and 113 of 137 overmature pods were accurately classified, therefore proving 

great prediction dependability. Moreover, the precision-recall curves in Figure 10 revealed 

consistent sensitivity and specificity trade-offs across every class. Suggesting a high degree of 

class separability, the area under the ROC curve (AUC-ROC) values are 0.83 for immature, 

0.80 for mature, and 0.84 for overmature. 

 

Fig. 10. TPR-FPR curves for each class with AUC scores. 

Inference time was measured to assess the model’s practical deployment capability. The 

average inference time per image was 21 milliseconds on an NVIDIA RTX 4070 GPU, 

demonstrating feasibility for real-time deployment in environments such as smart harvesters or 

quality control systems. Although training time was intensive, largely due to the complexity of 

transformer-based architectures and the integration of SPT and LSA, the model compensates 

with a fast inference time, which is competitive with traditional CNN-based models such as 

ResNet and EfficientNet in similar agricultural classification tasks. While some lightweight 

CNNs can achieve inference times below 10 ms, many reported CNN-based approaches operate 

within the 20–45 ms range depending on hardware and model complexity , while our model 

achieves a latency of just 21 milliseconds, making it suitable for real-time deployment. 

Misclassified examples were predominantly found in the immature–mature and mature–

overmature boundaries, where lighting inconsistency and fruit surface shadowing played a role 

in confusing visual signals. Some fruits displayed multiple matureness indicators on a single 

pod, leading to ambiguity during labeling and training. These results highlight the persistent 

challenge of environmental variability in field-collected data. Nevertheless, the use of SPT 

contributed to improved local texture modeling, while LSA helped focus attention on 

contextually relevant features. Figure 10 presents several examples of such misclassified 

images, illustrating the visual ambiguity that challenged the model. 

 

Fig. 11. Examples Of Misclassified Cocoa Fruit Images. 

Despite its success, the research faces several limitations. The dataset, while diverse, 

remains small and may not encompass all variations in cocoa pod appearance. Lighting 

conditions were not standardized, which may have introduced noise during model training. 
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Moreover, the class imbalance between mature and non-mature classes could still influence 

decision boundaries. Addressing these limitations will require the collection of a larger and 

more balanced dataset, the use of advanced augmentation strategies, or the integration of 

multimodal data such as hyperspectral or thermal imaging. 

We also conducted 10-fold cross validation for ViT and our method to show the 

improvement provided by using SPT and LSA. The results of 10-fold cross-validation for ViT 

and the proposed method are shown in Table 2. Our method consistently outperformed ViT, 

achieving a higher mean accuracy (89.23%) and lower variance (0.24%) compared to ViT 

(average accuracy 86.5%, variance 0.69%). The reduced variance indicates that the proposed 

method performs more consistently across different data splits, highlighting its robustness and 

reliability. This showed the effect of utilizing SPT and LSA on the ViT model performance. 
Table 2 - 10-fold Cross validation result. 

Fold ViT Accuracy (%) Proposed Method Accuracy (%) 

Fold 1 85.23 88.41 

Fold 2 87.42 89.02 

Fold 3 86.87 89.83 

Fold 4 88.12 88.74 

Fold 5 86.03 89.62 

Fold 6 85.94 89.47 

Fold 7 87.11 89.25 

Fold 8 85.67 89.98 

Fold 9 86.21 88.67 

Fold 10 86.45 89.33 

Mean 86.5 89.23 

Variance 0.69 0.24 

To further demonstrate the effects of using SPT and LSA, we conducted ablation study. 

The ablation study evaluated the contributions of SPT and LSA to the system performances. 

Table 3 summarizes the ablation study results. Adding SPT improved accuracy by 1.48% over 

the baseline ViT, showing its effectiveness in enriching the training set and improving 

generalization. Adding LSA improved accuracy by 0.75%, enhancing localized feature 

extraction. By combining SPT and LSA, we obtained the best performance (82.65%), 

demonstrating their complementary roles for enhancing the ViT performance in classyfing 

cocoa fruit ripeness. 
Table 3 - Ablation study result. 

Model Accuracy (%) Macro F1-Score (%) 

Model 1 (Baseline ViT) 80.14 80.25 

Model 2 (ViT + SPT) 81.62 81.48 

Model 3 (ViT + LSA) 80.89 80.93 

Model 4 (Proposed Method) 82.65 82.71 

We evaluated our proposed method and compared it with other four methods, namely 

VGG, MobileNet, ResNet and Vision Transformer (ViT). Table 4 summarizes their 

performance metrics. Our proposed method achieved the highest accuracy (82.65%), 

outperforming ViT (80.14%) and other models. MobileNet and VGG had the lowest accuracies, 

indicating limitations in their architectures for this dataset. The proposed method also exhibited 

the best balance of performances across all classes (82.71%), followed by ViT (80.25%). 

Furthermore, our method outperformed all other methods across all classes. The most 

significant improvement was observed for the challenging Mature class, achieving an F1-score 

of 80.68%, compared to 76.37% for ViT. 
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Table 4 - Performance comparison. 

Method Accuracy 
Macro avg F1-

Score 

Immature F1-

Score 

Mature 

F1-score 

Overmature 

F1-score 

VGG 64.76 62.81 72.11 58.48 57.83 

MobileNet 72.45 70.68 80.87 64.76 66.41 

ResNet 76.39 75.55 81.95 70.17 74.52 

ViT 80.14 80.25 81.4 76.37 82.96 

Proposed method 82.65 82.71 83.13 80.68 84.33 

In summary, our proposed ViT-SPT-LSA model achieved high classification accuracy 

and robustness, particularly in difficult conditions involving inter-class similarity and lighting 

variability. Its fast inference time and generalization potential make it well-suited for real-time 

agricultural deployment and adaptation across related smart farming tasks. 

 

5.  Conclusion 

This research proposed a cocoa ripeness classification model based on Vision 

Transformer (ViT), enhanced with Shifted Patch Tokenization (SPT) and Locality Self-

Attention (LSA). The model achieved a classification accuracy of 82.65% and a macro-average 

F1-score of 82.71%, outperforming baseline ViT and other CNN-based architectures. These 

results highlight the effectiveness of combining SPT and LSA in enhancing ViT’s 

generalization on small and variable agricultural datasets. From a theoretical standpoint, the 

work demonstrates the adaptability of transformer-based architectures for complex agricultural 

image recognition tasks. Practically, the proposed system offers strong potential for automating 

cocoa ripeness classification during harvesting or quality control, especially under inconsistent 

field conditions. Nevertheless, limitations include the relatively small dataset size, susceptibility 

to lighting variations, and class imbalance, particularly in the mature class. Future work should 

focus on scaling the dataset, incorporating advanced augmentation or hyperspectral data, and 

deploying the model on edge computing devices for real-time, in-field applications to fully 

realize the benefits of smart agriculture technologies. 
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