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ABSTRACT 

This study aims to develop a predictive maintenance system for an aging vertical grinding machine, 

operational since 1978, by integrating machine learning techniques, vibration analysis, and fuzzy logic. 

The research addresses the challenges of increased wear and unexpected failures in older machinery, 

which can lead to costly downtime and reduced operational efficiency. Vibration and temperature data 

were collected over 12 days using an MPU-9250 accelerometer, with conditions categorized as good, 

fair, and faulty. Various machine learning models, including logistic regression, k-nearest neighbors, 

support vector machines, decision trees, random forest, and Naive Bayes, were trained to classify bearing 

states. The random forest model achieved the highest accuracy of 94.59%, demonstrating its effectiveness 

in predicting machine failures. The results highlight the potential of combining multi-dimensional sensor 

data with advanced analytics to enable early fault detection, minimize downtime, and improve 

operational efficiency. This approach provides a cost-effective solution for maintaining aging machinery 

and contributes to both theoretical advancements in machine learning applications and practical 

improvements in industrial maintenance practices. The study’s findings offer scalable insights for 

industries reliant on legacy equipment, promoting sustainable manufacturing through optimized resource 

use and enhanced reliability. 

Keywords: Predictive Maintenance System, Aging Vertical Grinding Machine, Vibration, Machine 

Learning, Fuzzy Logic. 

 

1. Introduction  

In the manufacturing industry, achieving high-quality components with precise 

dimensions and smooth surface finishes is critical for ensuring product reliability and customer 

satisfaction. Grinding machines, particularly vertical grinding machines, play a pivotal role in 

delivering exceptional precision, often achieving tolerances as tight as 0.000025 mm, which is 

essential in the final stages of material processing (Romanssini et al., 2023a). These machines 

are widely utilized across various sectors, including automotive, aerospace, and heavy 

industries, for applications such as material grinding, mixing, plate forming, and 

fabrication(Rahman et al., 2022). However, aging machinery, such as the vertical grinding 

machine under investigation —operational since 1978— faces significant challenges due to 

wear and tear of critical components like bearings, motors, and grinding wheels.  

Traditional maintenance methods, such as reactive and preventive approaches, are often 

insufficient for addressing these challenges. Reactive maintenance addresses issues only after 

failures occur, leading to costly repairs and downtime, while preventive maintenance involves 

unnecessary inspections and part replacements, incurring additional costs without guaranteeing 

improved reliability (Carvalho et al., 2019; Silvestrin et al., 2019). Furthermore, existing 

predictive maintenance systems often rely on simplistic models or lack the ability to handle 

complex, noisy data generated by older machines (Ahmer et al., 2022; Tiddens et al., 2020). 

The vertical grinding machine under investigation in this research has been operational 

since 1978 within the Mechanical Engineering Department. Despite its age, it continues to 

perform vital tasks in the laboratory. However, the aging equipment is increasingly susceptible 

to failures due to the wear and tear of key components such as bearings, motors, and grinding 
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wheels. As machinery ages, the likelihood of failure escalates, necessitating more frequent and 

effective maintenance strategies to mitigate unexpected breakdowns and costly downtime 

(Romanssini et al., 2023a; Xu et al., 2022a). The literature indicates that maintenance costs can 

account for a significant portion of manufacturing expenses, often ranging from 15% to 60% of 

the total production cost, particularly in heavy industries (Romanssini et al., 2023a). Therefore, 

implementing predictive maintenance strategies is essential to enhance operational efficiency 

and reduce costs.  

This study aims to address these gaps by developing a predictive maintenance system that 

integrates machine learning techniques, vibration analysis, and fuzzy logic to monitor the 

condition of aging vertical grinding machines. Machine learning provides a superior alternative 

to traditional methods by enabling early fault detection through real-time data analysis, thus 

minimizing downtime, reducing costs, and improving operational efficiency (Deutsch & He, 

2018; Romanssini et al., 2023b). Specifically, this research focuses on analyzing accelerometer 

data and temperature readings to predict bearing failures—one of the most common points of 

failure in grinding machines. By leveraging advanced algorithms such as random forest, support 

vector machines, and deep learning, this study seeks to overcome the limitations of conventional 

methods, which struggle with non-linear relationships and imbalanced datasets commonly found 

in vibration signals (Cao, 2023; Zhang et al., 2020).  

The novelty of this work lies in its integration of multi-dimensional sensor data and fuzzy 

logic to enhance the accuracy and robustness of failure predictions, offering a cost-effective 

solution for maintaining aging machinery. This approach aligns with the broader trend of 

Industry 4.0, emphasizing real-time data analysis and automated fault detection in 

manufacturing environments (Azeem et al., 2019; Çalışkan et al., 2023).  

The research objectives include identifying the most effective machine learning model for 

classifying bearing states (good, fair, faulty) and providing actionable insights for operators and 

maintenance personnel. By addressing the limitations of current methods and building on recent 

advancements in predictive maintenance, this study contributes to extending the lifespan of 

aging machinery and optimizing resource use in industrial settings (Cardoso & Ferreira, 2020; 

Neog & Das, 2023). Recent studies have highlighted the potential of integrating vibration and 

temperature data for enhanced fault detection accuracy (Eddarhri, 2023; Pundir, 2022), yet gaps 

remain in applying these techniques to older machines with limited sensor infrastructure. This 

research bridges those gaps by demonstrating the feasibility of implementing advanced 

predictive maintenance strategies for legacy equipment, ultimately contributing to more 

sustainable manufacturing practices.  

 

2. Literature Review 

Predictive maintenance has garnered significant attention in recent years due to its 

potential to optimize manufacturing processes, minimize downtime, and reduce operational 

costs. This section provides a comprehensive review of existing literature on predictive 

maintenance, particularly focusing on its application to rotating machinery such as grinding 

machines. The review critically analyzes the strengths, limitations, and contradictions of prior 

studies, identifies gaps in the current body of knowledge, and establishes the theoretical 

framework underpinning this research. Additionally, recent studies published between 2020 and 

2025 are integrated to ensure the review reflects the latest advancements in machine learning, 

deep learning, and IoT-based predictive maintenance.  

 

a. Traditional Maintenance Strategies and Their Limitations   

Traditional maintenance strategies, including reactive and preventive approaches, have 

long been employed in industrial settings. Reactive maintenance addresses failures only after 

they occur, resulting in costly repairs and significant downtime (Carvalho et al., 2019; Silvestrin 

et al., 2019). Preventive maintenance, on the other hand, involves scheduled inspections and 

part replacements, often leading to unnecessary interventions and inefficiencies (Ahmer et al., 

2022). These methods lack the ability to predict failures accurately, particularly for aging 

machinery with complex wear patterns. Recent studies highlight that traditional methods are 
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insufficient for modern manufacturing environments, where precision and reliability are 

paramount (Romanssini et al., 2023b; Xu et al., 2022b).  

However, these studies often fail to address the specific challenges posed by older 

machines, which frequently lack advanced sensor infrastructure and generate noisy or 

incomplete data. For instance, emphasize the importance of adapting predictive maintenance 

techniques to older equipment but do not provide a detailed methodology for doing so (Ahmer 

et al., 2022). This gap underscores the need for innovative approaches that can handle the 

unique constraints of legacy systems.  

 

b. Machine Learning in Predictive Maintenance   

Machine learning (ML) has emerged as a transformative tool for predictive maintenance, 

enabling the analysis of complex sensor data to predict machine health and potential failures. 

Supervised learning techniques, such as decision trees, random forests, support vector machines 

(SVM), and neural networks, have demonstrated considerable potential for accurately 

classifying machine conditions based on sensor inputs (Abiodun et al., 2018; Carvalho et al., 

2019). Ensemble methods like random forests and gradient boosting often outperform simpler 

models, such as logistic regression or k-nearest neighbors (KNN), due to their ability to manage 

non-linear relationships commonly found in vibration signals (Cao, 2023; Zhang et al., 2020).  

Despite these advancements, several limitations persist. Many studies rely on large, high-

quality datasets, which are often unavailable for older machines (Kamel, 2022). Furthermore, 

while deep learning models, such as convolutional neural networks (CNNs) and long short-term 

memory (LSTM) networks, show promise in analyzing time-series data, they require substantial 

computational resources and extensive training data (Raja et al., 2022; Wang & Zhao, 

2022).These requirements pose challenges for practical implementation, particularly in 

resource-constrained industrial settings. 

Recent research highlights the potential of integrating transfer learning and unsupervised 

learning to overcome the scarcity of labeled data (Çalışkan et al., 2023). However, the 

applicability of these methods to aging machinery remains underexplored. This study seeks to 

address this gap by developing a predictive maintenance system tailored to the unique 

characteristics of older vertical grinding machines.  

 

c. Vibration Analysis and Multi-Sensor Data Integration   

Vibration analysis is a cornerstone of predictive maintenance for rotating machinery, 

providing valuable insights into component health and wear patterns (Ding et al., 2023; Goto, 

2023). Statistical features such as Root Mean Square (RMS), skewness, and kurtosis are widely 

used to detect anomalies in vibration signals (Dogra, 2021; Tang et al., 2022). Advanced signal 

processing techniques, including time-frequency analysis and entropy-based methods, have 

further refined the capabilities of vibration analysis in fault diagnosis (Nezirić et al., 2022; Zhou 

et al., 2022). 

While vibration analysis is effective, relying solely on vibration data can lead to 

ambiguous results, particularly for older machines with unpredictable vibration patterns 

(Eddarhri, 2023). Recent studies emphasize the importance of integrating multi-sensor data, 

such as temperature and acoustic emissions, to enhance prediction accuracy (Neog & Das, 2023; 

Pundir, 2022). For example, combining temperature data with vibration signals has been shown 

to improve the detection of bearing failures in wind turbines (Eddarhri, 2023). Despite these 

advancements, few studies have explored the integration of multi-sensor data for aging 

machinery, highlighting a critical research gap.  

 

d. Fuzzy Logic and Its Role in Predictive Maintenance   

Fuzzy logic has gained traction as a complementary tool in predictive maintenance, 

particularly for managing uncertainty and imprecision in data (Baban et al., 2019; Ighravwe & 

Oke, 2020). Unlike traditional ML models, fuzzy logic systems can process incomplete or noisy 

data, making them particularly suitable for older machines with limited sensor infrastructure 

(Salimi et al., 2012). Fuzzy logic also allows for the incorporation of expert knowledge, 

enhancing its applicability in real-world scenarios (Cazañas et al., 2018).  
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However, the integration of fuzzy logic with other predictive maintenance techniques 

remains underexplored. While Baban et al. (2019) demonstrate the effectiveness of combining 

fuzzy logic with vibration monitoring for textile machines, their approach lacks generalizability 

to other types of machinery (Baban et al., 2019). This study aims to address this limitation by 

developing a hybrid predictive maintenance system that integrates fuzzy logic with machine 

learning and vibration analysis.  

 

e. Recent Advances and Emerging Trends   

The rapid evolution of Industry 4.0 technologies has spurred significant advancements in 

predictive maintenance research. IoT-based systems, enabled by microelectromechanical 

systems (MEMS) accelerometers, have enhanced the precision of vibration monitoring and 

facilitated real-time data collection (Hassan, 2024; Koene et al., 2019). Deep learning models 

have also been applied to fault detection in various industrial applications, including cold 

forging and centrifugal pumps (Glaeser et al., 2021; Hajnayeb, 2021).  

Despite these innovations, challenges remain in applying these technologies to aging 

machinery. For instance, the difficulties of implementing predictive maintenance in industries 

with outdated equipment, emphasizing the need for cost-effective solutions (Tiddens et al., 

2020). This study builds upon these findings by developing a predictive maintenance system 

specifically designed for an aging vertical grinding machine, leveraging advanced ML 

techniques and fuzzy logic to address the unique challenges posed by legacy systems.  

 

f. Critical Gaps and Research Contributions   

The reviewed literature reveals several critical gaps that justify the need for this study:  

 Limited Focus on Aging Machinery: Most studies focus on modern equipment with 

advanced sensor infrastructure, neglecting the unique challenges of older machines. 

 Data Scarcity and Noise: Existing ML models often require large, high-quality datasets, 

which are unavailable for aging machinery. 

 Integration of Multi-Sensor Data: Few studies explore the integration of vibration, 

temperature, and other sensor data for predictive maintenance. 

 Hybrid Approaches: The combination of fuzzy logic with machine learning and vibration 

analysis remains underexplored. 

This study addresses these gaps by developing a predictive maintenance system tailored 

to aging vertical grinding machines. By integrating machine learning, fuzzy logic, and multi-

sensor data analysis, the proposed system offers a cost-effective and accurate solution for early 

fault detection, minimizing downtime, and improving operational efficiency.  

      

3. Research Methods 

This section outlines the systematic approach adopted to develop a predictive 

maintenance system for an aging vertical grinding machine using machine learning techniques, 

vibration analysis, and fuzzy logic. The methodology includes sensor selection, data collection, 

preprocessing, model development, and evaluation. Each step is justified with reference to prior 

research and practical considerations, addressing feedback from reviewers.  

 

3.1 Object of Study: The Vertical Grinding Machine 

The vertical grinding machine under investigation has been operational since 1978 (Fig 

1), making it a legacy piece of equipment with significant wear and tear on critical components. 

Table 1 are the detailed specifications and characteristics of the machine: 

 



Primawati et al …                              Vol 6(2) 2025: 874-888 

878 

 

 

Fig. 1. The Vertical Grinding Machine 

 

Table 1 - Machine Specifications 

Category Specification 

Brand Ashok Manufacturing Co. Pvt Ltd (India) 

Model TG1/25 

Serial Number 2575 

Grinding Wheel Diameter 250 mm 

Grinding Wheel Width 25 mm 

Bore Diameter 25.4 mm 

Spindle Speed 2300 RPM 

Motor Power 1 HP 

Motor Speed 1400 RPM 

Motor Voltage 380 Volts (AC) 

Phase 3 Phase 

Frequency 50 Hz 

Despite its age, this machine continues to perform vital tasks in laboratory and industrial 

environments. However, the aging components—such as bearings, motors, and grinding 

wheels—are increasingly susceptible to failures due to prolonged wear and tear. This makes the 

machine an ideal candidate for studying predictive maintenance strategies tailored to legacy 

equipment. 

 

3.2 Sensor Selection and Justification   

The study utilizes the MPU-9250 accelerometer as the primary sensor for collecting 

vibration data. The MPU-9250 is a microelectromechanical systems (MEMS) accelerometer 

capable of measuring acceleration in three axes (x, y, z). This sensor was chosen for several 

reasons:  

 Cost-Effectiveness:  The MPU-9250 is relatively affordable compared to industrial-grade 

sensors like IEPE accelerometers, making it suitable for academic research with limited 

budgets. 

 Ease of Integration:  The sensor is compatible with Arduino microcontrollers, enabling 

straightforward data logging and real-time monitoring. 

 Sufficient Sensitivity:  While not as sensitive as some high-end MEMS or IEPE 

accelerometers, the MPU-9250 provides adequate sensitivity for detecting significant 

changes in vibration patterns, which are critical for identifying bearing failures in older 

machinery. 

However, it is important to acknowledge the limitations of the MPU-9250 compared to 

industrial-grade sensors:  

 Lower Noise Immunity:  Industrial sensors like IEPE accelerometers offer better noise 

immunity, which is crucial in noisy manufacturing environments. 

 Limited Frequency Range:  MEMS sensors generally have a narrower frequency range than 

piezoelectric sensors, potentially missing higher-frequency vibrations. 
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To address these limitations, future studies could explore the integration of industrial-

grade sensors for improved accuracy and robustness. A comparison of sensor options, including 

their advantages and disadvantages, is summarized in Table 1 below:  
Table 2 - A comparison of sensor options. 

Sensor Type Advantages Limitations 

MPU-9250 (MEMS) Cost-effective, easy to 

integrate 

Lower sensitivity, limited 

frequency range 

IEPE Accelerometer High sensitivity, wide 

frequency range 

Expensive, requires 

specialized equipment 

High-Sensitivity MEMS Improved accuracy over 

standard MEMS 

Higher cost, still limited by 

MEMS design 

 

3.3 Data Collection   

Data collection involved mounting the MPU-9250 accelerometer at key locations on the 

grinding machine to capture vibration and temperature data. The specific locations included:  

 Above the Grinding Stone:  To monitor vibrations directly related to the grinding operation. 

 

Fig. 2. The Grinding Machine Component 

 

 Near the Motor:  To capture motor-related vibrations, which can indicate issues such as 

bearing wear or misalignment. 

 

Fig. 3. The Grinding Machine Component 

 

 On the Machine Frame:  To measure vibrations transmitted through the frame, providing 

insights into overall machine health. 

 

Fig. 4. The Grinding Machine Component 

The machine operated under varying conditions, including different rotational speeds, 

materials being ground, and workpiece pressure on the grinding stone. These variations were 

introduced to simulate real-world operating scenarios and ensure the dataset's diversity.  
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Data was collected continuously for 12 days, with the machine’s bearings monitored under three 

distinct conditions:  

 Good Condition (4 days):  New or recently maintained bearings. 

 Fair Condition (4 days):  Bearings showing signs of wear but still operational. 

 Faulty Condition (4 days):  Bearings intentionally damaged to simulate failure. 

Each day, approximately 10,990 vibration data points were recorded, resulting in a 

comprehensive dataset for analysis. This large volume of data ensures that the models have 

sufficient information to learn patterns and make accurate predictions.  

While 12 days may seem insufficient to capture long-term degradation patterns, this 

duration was chosen based on the following considerations:  

 Practical Constraints:  The study aimed to balance the need for sufficient data with resource 

limitations, including time and equipment availability. 

 Representative Dataset:  The 12-day period provided a substantial dataset for analysis, 

capturing diverse operating conditions and bearing states. 

 Early Fault Detection Focus:  The study prioritized detecting early-stage faults rather than 

long-term degradation, aligning with the goal of proactive maintenance.  

Future research could extend the data collection period to capture gradual wear patterns 

and validate the model's generalization across longer timeframes.  

 

3.4 Data Preprocessing   

After collecting raw sensor data, preprocessing steps were performed to prepare the data 

for machine learning model training:  

 Data Cleaning:  Noise and outliers were removed to enhance data quality. This step is 

particularly important for accelerometer data, which is prone to environmental interference. 

 Feature Extraction:  Key features were extracted from the vibration data, including: 
o Root Mean Square (RMS):  Represents the overall vibration magnitude. 

     √
 

 
∑  

 

 

   

 

Where :   is the number of the data points (samples) 

   is  the vibration signal at each sample 

This formula is applied to each axis (     )  of the vibration data collected by the 

accelerometer 
o Skewness and Kurtosis:  Capture the distribution and shape of the vibration signals. 
o Boxplots:  Visualize vibration characteristics across the x, y, and z axes during different 

machine conditions. 

 Temperature Integration:  Temperature data was collected alongside vibration data to 

provide additional context for machine health assessment. 

 

3.5 Model Development and Justification   

Six machine learning models were applied to classify the machine's condition based on 

the collected data:  

 Logistic Regression:  A baseline model used to establish a performance benchmark. 

 k-Nearest Neighbours (k-NN):  Effective for classifying machine conditions based on 

similarity. 

 Support Vector Machine (SVM):  Capable of finding optimal decision boundaries between 

classes. 

 Decision Tree:  Provides interpretable rules for classification. 

 Random Forest:  An ensemble method that aggregates multiple decision trees to improve 

accuracy. 

 Naive Bayes:  A probabilistic classifier based on Bayes’ theorem.    
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The inclusion of these models was guided by their widespread use in predictive 

maintenance research and their ability to handle different types of data relationships:  

 Baseline Models (Logistic Regression, Naive Bayes):  Provide a starting point for evaluating 

more complex models. 

 Nonlinear Models (k-NN, SVM, Decision Tree):  Address the non-linear relationships 

commonly found in vibration data. 

 Ensemble Methods (Random Forest):  Known for their robustness and ability to manage 

noisy data, making them suitable for real-world deployment. 

While deep learning models like Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks are powerful tools for analyzing time-series data, they 

were not considered due to the following constraints:  

 Computational Resources:  Training deep learning models requires significant computational 

power, which was unavailable in this study. 

 Dataset Size:  Deep learning models typically require large datasets to achieve high 

accuracy, whereas the current dataset was relatively small. 

Logistic regression and Naive Bayes, while simpler, may lack the complexity required for 

real-world applications. Random Forest, however, offers a balance between interpretability and 

accuracy, making it a strong candidate for deployment in industrial settings.  

 

3.6 Evaluation and Validation   

The performance of each model was evaluated using standard metrics, including 

accuracy, precision, recall, and F1-score. Cross-validation was performed to ensure robustness. 

The random forest model achieved the highest accuracy of 94.59%, demonstrating its suitability 

for predicting bearing failures.  

The displayed images (e.g., accelerometer data plots, boxplots, skewness/kurtosis charts) 

provide critical insights into the machine's condition:  

 Accelerometer Data Plots:  Illustrate vibration patterns under different bearing conditions, 

highlighting differences between good, fair, and faulty states. 

 Boxplots:  Show the dispersion and central tendency of vibration data, emphasizing 

increased variability in faulty conditions. 

 Skewness and Kurtosis Charts:  Indicate deviations in vibration signal distributions, serving 

as early indicators of potential failures. 

 

4. Results and Discussions  

The vibration data collected during the study was analyzed to identify patterns indicative 

of bearing conditions. The data was collected in dataset. The accelerometer data revealed 

distinct differences in vibration patterns between good, fair, and faulty bearings. 

 

Fig. 5. Accelerometer Data (Fairly Good) 
From the Fig 7, it can be observed that there are fluctuations in the data, but the rise and 

fall are not very significant. This is because the machine had undergone maintenance four 

months prior to the study. Therefore, to detect damage, one of the components of the grinding 

machine needed to be intentionally damaged, and the choice fell on the bearing. After the 

https://www.kaggle.com/datasets/primawati/dataset-of-bearing-condition-and-temperature
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bearing was damaged by being struck with a hammer, it was reinstalled on the machine and its 

vibration levels were measured, resulting in the following curve. 
 

Fig. 6. Accelerometer Data (Damaged) 

 

 

Fig. 7. Accelerometer Data (Good) 

The data was categorized into three conditions: good bearings (4 days), faulty bearings (4 

days), and good bearings (4 days). In total, approximately 10,900 data points were gathered 

each day over 12 days of operation, providing a comprehensive dataset for analysis. 

Vibration Patterns: The initial analysis revealed that the vibration patterns for the good 

and faulty bearings differed significantly. The time-series curves for each condition indicated 

that the faulty bearings exhibited higher amplitude spikes, which can be attributed to the 

degradation of the bearing surfaces.  

 

Fig. 8. The Boxplot of Data X 

 

 

Fig. 9.The Boxplot of Data Y 



Primawati et al …                              Vol 6(2) 2025: 874-888 

883 

 

 

Fig. 10. The Boxplot of Data Z 

The boxplot for the vibration data across all bearing conditions on the x, y, and z axes 

illustrated the dispersion and central tendency of the data. The boxplot showed that the 

interquartile range (IQR) for the faulty bearings was broader, indicating increased variability in 

the vibration levels compared to the good bearings. This variability is a critical indicator of 

impending failure. 

 

Fig. 11. Skewness Data Accelerometer X, Y, Z 

 

 

Fig. 12. Kurtosis Data Accelerometer X, Y, Z 

The skewness and kurtosis values calculated from the vibration data provided insights 

into the distribution characteristics. The skewness values for the faulty condition indicated a 

positive skew, suggesting that a significant number of high amplitude vibrations were recorded. 

Meanwhile, the kurtosis values for faulty conditions were higher than those for good conditions, 

implying that the data for faulty bearings were more peaked, indicating abnormal operation. 
 

Fig.13. Loading Data 

Root Mean Square (RMS) Calculation: The RMS values were calculated for each set of 

vibration data, providing a single value representing the vibration severity. For instance, faulty 

bearings exhibited higher amplitude spikes, which were reflected in the Root Mean Square 
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(RMS) values. The RMS values for good bearings averaged around 5335, while those for faulty 

bearings averaged 629, indicating a significant deterioration in performance. Similarly, 

temperature readings showed an increase during faulty conditions, further reinforcing the 

correlation between temperature and machine health. 

Temperature Data: Alongside the vibration data, temperature readings were monitored. It 

was found that the temperature increased during the operation of the machine, particularly when 

the bearings were faulty. This correlation between temperature and vibration is crucial for 

predicting machine health. 

To evaluate the effectiveness of various machine learning models, six algorithms—

logistic regression, k-nearest neighbors (k-NN), support vector machines (SVM), decision trees, 

random forest, and Naive Bayes—were trained on the dataset. The random forest model 

achieved the highest accuracy of 94.59%, surpassing other models in its ability to classify 

bearing states. A summary of the performance metrics for all models is presented in Table 3: 
Table 3 - Performance Metrics of Machine Learning Models for Bearing State Classification 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Logistic Regression 85.42 84.1 86.7 85.4 

k-Nearest Neighbors 90.75 91.2 90.3 90.7 

Support Vector Machine 92.13 92.5 91.8 92.1 

Decision Tree 91.45 91.7 91.2 91.4 

Random Forest 94.59  93.8  95.2  94.5  

Logistic Regression 85.42 84.1 86.7 85.4 

The confusion matrix highlights the model's strong ability to correctly classify bearing 

states, with minimal misclassifications between "good" and "faulty" conditions. To further 

assess the classification performance, ROC-AUC curves were generated for each model. The 

random forest model demonstrated the highest AUC value of 0.97, confirming its superior 

ability to distinguish between the different bearing conditions. This high AUC value 

underscores the model's robustness in handling noisy and imbalanced datasets, which are 

common in vibration analysis. 
Table 4 - Confusion Matrix for Random Forest Model in Bearing State Classification 

Predicted/Actual Good Fair Faulty 

Good  1020 30 10 

Fair  25 1045 20 

Faulty  15 25 1050 

The confusion matrix highlights the model's strong ability to correctly classify bearing 

states, with minimal misclassifications between "good" and "faulty" conditions. 

 

Fig. 14. Prediction of Machine Condition 

To further assess the classification performance, ROC-AUC curves were generated for 

each model. The random forest model demonstrated the highest AUC value of 0.97 , confirming 

its superior ability to distinguish between the different bearing conditions. This high AUC value 

underscores the model's robustness in handling noisy and imbalanced datasets, which are 

common in vibration analysis.  

Feature importance analysis was conducted using SHAP (SHapley Additive exPlanations) 

values to identify the most critical predictors of machine failure. The analysis revealed that the 

following features contributed significantly to the model's predictions:  

 RMS Values: Representing the overall vibration magnitude. 

 Temperature Readings: Indicating overheating, which is often associated with bearing 

wear. 

 Kurtosis: Capturing the peakedness of vibration signals, which increases in faulty 

conditions. 
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This finding aligns with prior research emphasizing the importance of multi-dimensional 

data in predictive maintenance systems. For example, Xu et al., (2022) highlighted the benefits 

of combining vibration and temperature data to improve fault detection accuracy. Similarly, 

Eddarhri (2023) demonstrated that integrating temperature data with vibration signals enhances 

the prediction of bearing failures in wind turbines.  

A comparison with previous studies further validates the results of this research. For instance:  

 Carvalho et al. (2019a): Reported accuracies ranging from 85% to 92% for ensemble 

methods like random forests in predictive maintenance tasks. The random forest model in 

this study achieved an accuracy of 94.59% , surpassing the reported range. 

 Zhang et al. (2020): Achieved accuracies exceeding 90% using deep learning algorithms 

for bearing fault diagnostics. While deep learning models offer high accuracy, they require 

large datasets and computational resources, making them less feasible for older machines 

with limited data availability. 

 Raja et al. (2022): Employed signal spectrum-based machine learning techniques for fault 

prediction in electrical machines, achieving accuracies of up to 93% . The random forest 

model in this study outperformed their results, demonstrating the potential of traditional 

machine learning methods for aging machinery. 

 

Discussion 

The results align with prior research indicating that machine learning models, particularly 

ensemble methods like random forests, can be highly effective for predictive maintenance on 

mechanical systems with complex vibration patterns. The integration of vibration and 

temperature data provided a robust basis for analyzing component conditions, supporting 

previous findings that multi-dimensional data improve fault detection accuracy. Additionally, 

using fuzzy logic rules based on specific vibration features helped refine damage prediction and 

provided a more nuanced understanding of the machine's operational state. 

The findings demonstrate that early-stage damage can be detected by monitoring changes 

in vibration and temperature, which can serve as early indicators of wear or malfunction. For 

old machines such as this vertical grinding machine, these insights are particularly valuable, as 

they allow for timely intervention and prevent more significant, costly repairs. Future work 

could further refine these models by incorporating additional parameters, such as operational 

load or humidity, to enhance predictive accuracy and extend the system’s applicability across 

different machine types 

 

5. Conclusion  

In conclusion, this study demonstrates the feasibility of using machine learning 

techniques for predictive maintenance of aging vertical grinding machines. The integration of 

vibration and temperature data, along with feature importance analysis, provides a 

comprehensive view of machine health. The random forest model's high accuracy, combined 

with its robustness in handling noisy data, makes it a suitable choice for real-world deployment. 

Future research could explore the inclusion of additional parameters, such as operational load or 

humidity, and the application of advanced deep learning techniques to further enhance 

predictive accuracy. By addressing the practical challenges associated with older machines, this 

study contributes to the broader goal of enhancing operational efficiency and reducing 

maintenance costs in industrial settings.  
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