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ABSTRACT  

This study addresses the Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP), 

a highly complex NP-hard problem that combines vehicle routing with spatially constrained three-

dimensional bin packing. To tackle this challenge, we propose an enhanced Artificial Immune System 

(En-AIS) that integrates a novel local search heuristic called “Bring-i-to-j,” designed to improve routing 

feasibility and loading efficiency. The En-AIS algorithm is further refined through rigorous parameter 

tuning using a full factorial design and ANOVA analysis. Comparative experiments were conducted 

against conventional AIS and the Firefly Algorithm (FA) across 27 benchmark instances. Results 

demonstrate that En-AIS consistently outperforms both baseline methods in terms of solution quality, 

achieving an average improvement of 15–20% while maintaining competitive computational times. These 

findings highlight the algorithm’s robustness and its practical potential for application in logistics and 

supply chain optimization tasks involving joint routing and loading decisions. 

Keywords: Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP), Artificial 

Immune System, Firefly Algorithm, Metaheuristics, Bring-i-to-j Heuristic, Optimization Algorithms. 

 

1. Introduction  

Logistics plays a crucial role in the global economy and society by facilitating the 

efficient movement of goods and people. Transportation costs significantly influence the price 

of consumables and commodities, thereby affecting overall economic efficiency. In 2021, the 

global logistics market was valued at over €8.4 trillion and is projected to exceed €13 trillion by 

2027, accounting for approximately 10.7% of the global GDP (Placek, 2023). The escalating 

complexity of supply and distribution networks has amplified the importance of optimizing 

packing and routing processes, which are pivotal in determining shipping costs. Addressing 

these factors can significantly reduce logistical expenses and enhance overall supply chain 

performance. 

Enhancing on-time delivery not only fosters improved customer service but also provides 

organizations with a substantial competitive advantage. In this context, the Three-Dimensional 

Loading Capacitated Vehicle Routing Problem (3L-CVRP) has gained increasing attention due 

to its practical significance in various industries, including e-commerce, automotive, and 

express delivery. The 3L-CVRP is an NP-hard problem that combines the challenges of serving 

multiple customers with a fleet of vehicles and efficiently loading rectangular boxes into 

containers, all while minimizing the total travel distance. The objective is to achieve the lowest 

overall transportation cost by identifying the shortest route for each vehicle and optimizing the 

loading sequence. 

The 3L-CVRP is not only theoretically complex but also practically impactful. It 

represents a class of logistics problems where the efficiency of delivery operations depends on 

the joint optimization of routing and space-constrained loading. Effectively solving the 3L-

CVRP can directly lead to reduced transportation costs, improved vehicle utilization, and 

enhanced customer satisfaction—particularly in industries facing tight delivery schedules and 

spatial constraints, such as e-commerce, grocery distribution, and parcel logistics. Due to the 
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problem’s NP-hard nature and real-world relevance, it continues to attract significant attention 

in combinatorial optimization and logistics research. 

The complexity of 3L-CVRP arises from simultaneously optimizing routing decisions 

and packing strategies within vehicle capacity and stability constraints (Fuellerer et al., 2010; 

Gendreau et al., 2006). Exact optimization methods become impractical for larger problem 

instances, prompting extensive research into metaheuristic algorithms as viable alternatives. 

Nature-inspired metaheuristics have demonstrated robust performance in solving complex 

combinatorial problems, including vehicle routing problems (VRP). These algorithms can be 

categorized into physically-based methods (e.g., Simulated Annealing), socially-based methods 

(e.g., Tabu Search), and biologically-inspired methods (e.g., Genetic Algorithms, Ant Colony 

Optimization, Firefly Algorithm, and Artificial Immune System) (Engin & Doyen, 2004b; 

Yang, 2009). While substantial research has employed metaheuristics such as Genetic 

Algorithms (Chen et al., 2023), Tabu Search (Meliani et al., 2022), and Adaptive Large 

Neighborhood Search (Qi et al., 2023; Wang et al., 2025), relatively few studies have 

effectively applied Artificial Immune Systems (AIS) or Firefly Algorithms (FA) specifically to 

the 3L-CVRP, indicating a clear research gap in the current literature (Chi et al., 2025; Leloup 

et al., 2025). 

Existing AIS implementations typically employ generic mutation and selection processes, 

often limiting their performance in solving highly constrained and complex loading and routing 

problems (Freitas & Timmis, 2003; Garrett, 2005; Hart & Timmis, 2008). Conventional AIS 

explores solution spaces via simplistic mutation mechanisms without targeted local 

optimization, frequently resulting in suboptimal solutions and slower convergence (Timmis, 

2007). Recent literature indicates that targeted heuristic improvements and hybridization within 

AIS can substantially enhance its capability to handle real-world VRP complexities and 

constraints (Chi et al., 2025; Leloup et al., 2025; Wang et al., 2023). 

This paper proposes a novel heuristic-enhanced AIS algorithm designed explicitly for the 

3L-CVRP to bridge this research gap. Our approach differentiates itself from traditional AIS 

methods by integrating a specialized local search heuristic termed "Bring-i-to-j." This heuristic 

systematically exploits local improvements by efficiently relocating items within and across 

vehicle loading sequences, enhancing route feasibility, load stability, and space utilization. 

Additionally, our work rigorously fine-tunes algorithm parameters through factorial 

experimental design, systematically optimizing performance—an essential step frequently 

overlooked in previous AIS studies (Aytug et al., 2003). 

Thus, this research significantly contributes by addressing the explicitly identified gap 

through advanced heuristic integration and rigorous parameter optimization, providing 

substantial performance improvements over existing approaches. The remaining sections of this 

paper are organized as follows. Section 2 reviews related literature, describes mathematical 

modeling and presents the details of the proposed heuristic-enhanced AIS. Section 3 presents 

experimental results and analysis, while Section 4 concludes the study and outlines directions 

for future research. 

 

2. Literature Review 

2.1 Three-Dimensional Loading Capacitated Vehicle Routing Problem 

CVRP is known to be NP-hard, extending the scope of the classical Traveling Salesman 

Problem (TSP) by incorporating elements of the Bin Packing Problem (BPP) (Toth & Vigo, 

2002). This extension involves finding the shortest route for visiting all customers and 

efficiently packing goods into vehicles, making it a more complex and realistic representation of 

logistics problems. 

The 3L-CVRP combines the Three-Dimensional Loading Problem (3DLP) and the 

Capacitated Vehicle Routing Problem (CVRP). It involves determining a set of vehicle routes 

and a containment plan for efficiently loading the cargo on each route. Each route starts and 

ends at the warehouse, aiming to achieve the shortest total distance between shipments or the 

minimum traveling cost. While these objectives are often aligned, they can differ in certain 

scenarios where, for example, toll roads or fuel costs influence the cost efficiency differently 

from distance. 
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The rectangular cargo will be loaded into the truck's loading area for delivery to the 

customer. The loading area may not necessarily be square, aligning with the rectangular nature 

of the cargo. Packaged goods must not exceed the volume and weight that the vehicle can 

handle. 

In the previous literature, 3L-CVRP considers the following assumptions (Bortfeldt, 

2012; Doerner et al., 2007; Fuellerer et al., 2010; Gendreau et al., 2006):  

1. On one route, only one vehicle will be used (one car per route).  

2. Every vehicle will have a container volume, and the payload will be the same.  

3. Boxes or products are rectangular with different sizes.  

4. Products of the same customer must be in the same car or path.  

5. The total weight of the box in each car must not exceed the weight the car can carry.  

6. The total volume of all product boxes in each car must not exceed the volume the car can 

load.  

7. The edge of the product box must be placed parallel to the edge of the container or parallel to 

the x, y, and z axes without any part of the box coming out of the container.  

8. The top box supports the bottom and stabilizes it by filling the remaining space in the 

container with foam rubber.  

9. Boxes that must be delivered to the last customer should not be placed so that it will prevent 

boxes from reaching the earlier customers by using a first-in, first-out rule. 

A mathematical model is based on (Küçük & Topaloglu Yildiz, 2022), and a 

mathematical model for minimizing the efficiency of volume usage for vehicle containers has 

been developed by previous research (Chen et al., 1995; Christensen & Rousøe, 2009).  

The 3L-CVRP is made up of two parts: the transport and the loading or packaging. Part of 

product transportation can be explained by the complete graph G = (V, E), which consists of a 

set of vertices and edges. The problem can be described as follows: 1) Define the set of N+1 

transmission points (V = 0, 1, …, N), and let the single depot be at point 0 and the customer at 

point 1 to N. 2) Determine E as the set of edges (i, j) connecting all vertex pairs. 3) Let Dij 

represent the distance between nodes i to j. 4) Set K to represent the number of homogeneous 

vehicles with the same weight and volume limitation. 5) Assign the volume of packing area as 

Vol = Lc * Wc * Hc, where Lc, Wc, and Hc are the respective length, width, and height of cth 

vehicle containers. This problem aims to achieve the shortest total distance for the cargo. 

In the loading or packaging section is to minimize the number of vehicle containers 

required to pack the product. The problem model is described as follows: 1) Define a set of 

rectangular-shaped cargo boxes, the total number of B boxes (   ∑   
 
   

 ). Each box has a 

length, width, and height in lb, wb, and hb, respectively (b = 1, 2,…, B). 2) Set unlimited vehicle 

containers with length, width, and height in Lc, Wc, and Hc, respectively (c = 1, 2,…, K). The 

length, width, and height of the box must not exceed the length, width, and height of the vehicle 

containers (lb ≤ Lc, wb ≤ Wc, and hb ≤ Hc). In this research, the product box cannot be rotated for 

easy loading and unloading of boxes. Therefore, the last box delivered to the customer should 

not be blocked using the last-in, first-out (LIFO) rule. In terms of loading or packaging, assign i 

to represent each customer, where i = 1, 2, ..., N. Each customer has a demand for b boxes. Let 

Bi represent the total number of boxes of customer ith (b = 1, 2, ..., Bi). Define Iib instead of the 

item of customer ith, the box bth (    {   }), which consists of lib, wib, and hib representing the 

length, width, and height of the box bth of customer ith. The total volume of each customer's 

product is voi = ∑          
  
   

. The formulation of the 3L-CVRP is as follows: 

 

Indices: 

i, j  Customers ith and jth (i, j = 1, 2,…, N) 

c  Vehicle containers cth for each vehicle (c = 1, 2,…, K) 

b, a  Boxes bth and ath (b, a = 1, 2,…, Bi) 

 

Parameters: 

N  Total number of customer service nodes (0, 1, 2, …, N), 0 is the depot 

K  Total number of vehicles 
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Vol   Maximum vehicle container volume 

voi  Total volume of each customer’s product 

Dij   Distance from node i to j 

Fc  Fixed costs associated with using the cth vehicle 

Bi   Total number of boxes of customer ith (b = 1, 2, ..., Bi) 

B  Total number of boxes (   ∑   
 
   

 ) 

lb, wb, hb The length, width, and height of box bth 

lib, wib, hib The length, width, and height of box bth of customer ith 

Lc, Wc, Hc The length, width, and height of vehicle containers cth 

xb, yb, zb  The coordinates of a back-left-bottom corner that specifies the placement of 

boxes bth (xb, yb, zb  0) 

M           An arbitrarily large number used in Big-M constraints. 

 

Decision variables (a binary variable):  

   
   Equals 1 if the vehicle containers cth travels from node ith to jth ; 0 otherwise. 

Vc  Equals 1 if the vehicle containers cth is selected; 0 otherwise. 

lb
X, lb

Y, lb
Z Equals 1 if the length of the box bth is parallel to the X, Y, or Z axes; 0 

otherwise.  

wb
X, wb

Y, wb
Z  Equals 1 if the width of the box bth is parallel to the X, Y, or Z axes; 0 

otherwise. 

hb
X, hb

Y, hb
Z Equals 1 if the height of the box bth is parallel to the X, Y, or Z axes; 0 

otherwise. 

leba  Equals 1 if the box bth is placed on the left side of the box ath; 0 otherwise. 

riba  Equals 1 if the box bth is placed on the right side of the box ath; 0 otherwise. 

beba  Equals 1 if the box bth is placed on the back of the box ath; 0 otherwise. 

frba  Equals 1 if the box bth is placed in front of the box ath; 0. 

abba  Equals 1 if the box bth is placed above the box ath; 0 otherwise. 

unba  Equals 1 if the box bth is placed under the box ath; 0 otherwise. 

   
   Equals 1 if the item of customer ith, box bth is selected to be placed in the 

vehicle containers cth; 0 otherwise.  

 

Objective function: 

(         ∑ ∑ ∑       
  

   
 
   

 
   )           ∑     

 
        (1)  

 

Subject to: 

∑ ∑    
  

   
 
            { }              (2) 

∑ ∑    
  

   
 
            { }              (3) 

∑    
  

    ∑    
  

                       (4) 

∑    
  

    ∑    
  

                        (5) 

∑ ∑    
 
      

           
   

       (6) 

   
  {   }                                (7) 

xb + (lb * lb
X) + (wb * wb

X) + (hb * hb
X) ≤ xa + (1- beba) * M, b, a, b<a   (8) 

xa + (la * la
X) + (wa * wa

X) + (ha * ha
X) ≤ xb + (1- frba) * M,b, a, b<a   (9) 

yb + (lb * lb
Y) + (wb * wb

Y) + (hb * hb
Y) ≤ ya + (1- leba) * M, b, a, b<a   (10) 

ya + (la * la
Y) + (wa * wa

Y) + (ha * ha
Y) ≤ yb + (1- riba) * M, b, a, b<a   (11) 

zb + (lb * lb
Z) + (wb * wb

Z) + (hb * hb
Z) ≤ za + (1- unba) * M, b, a, b<a   (12) 

za + (la * la
Z) + (wa * wa

Z) + (ha * ha
Z) ≤ zb + (1- abba) * M, b, a, b<a   (13) 

leba + riba + beba + frba + abba + unba     
  +    

  - 1, b, a, b<a    (14) 

xb + (lb * lb
X) + (wb * wb

X) + (hb * hb
X) ≤ Lc + (1-    

 ) * M, b,c    (15) 

yb + (lb * lb
Y) + (wb * wb

Y) + (hb * hb
Y) ≤ Wc + (1-    

 ) * M, b,c    (16) 

zb + (lb * lb
Z) + (wb * wb

Z) + (hb * hb
Z) ≤ Hc + (1-    

 ) * M, b,c    (17) 

∑    
     

   
,b   B         (18) 
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∑ ∑    
   

        
 
   

, c             (19) 

lb
X, lb

Y, lb
Z, wb

X, wb
Y, wb

Z, hb
X, hb

Y, hb
Z, leba, riba, beba, frba, abba, unba, Cc, 

    
   {0,1}, b, a, b < a        (20) 

The objective function in (1) is to minimize the total distance of all routes and to reduce 

vehicles used. Equations (2) and (3) ensure that a route in an undirected graph visits each node 

exactly once and returns to the depot. In (4), the vehicle must only start and end at the depot. 

Equation (5) ensures that vehicles entering the node must exit the node. In (6), the packaged 

goods must not exceed the vehicle volume and the range of decision variables as in (7). 

Equations (8) to (13) ensure that the boxes loaded into the containers do not overlap. Equation 

(14) is applied when box bth and box ath are placed in container cth, with at least one side of box 

bth and box ath related by six variables (leba, riba, beba, frba, abba, and unba). Equations (15) to (17) 

ensure that all the boxes fit snugly into the container without overflowing, and (18) assures that 

one carton will be loaded into only one vehicle container. In (19), container cth will be selected 

when any box is assigned. Finally, (20) specified the range of the variables. The variables leba, 

riba, beba, frba, abba, and unba are only defined for b<a. The container will have the origin point 

coordinates at the back-left-bottom corner. The length Lc of the container is placed along the X-

axis, the width Wc along the Y-axis, and the height Hc along the Z-axis. The position of the box 

bth has the coordinates (xb, yb, zb) at the back-left-bottom corner. 

 

2.2 Metaheuristics Methods 

Solving real-world problems such as scheduling, packing, and routing can be effective for 

small-scale instances. However, as problem size increases, more sophisticated approaches are 

required. Nature-inspired metaheuristics have emerged as powerful tools, drawing inspiration 

from natural processes. These algorithms can be categorized into three groups (Engin & Doyen, 

2004b): physically-based methods like Simulated Annealing (SA); socially-based methods like 

Tabu Search (TS); and biologically-based methods such as Genetic Algorithms (GA), Neural 

Networks (NN), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), 

Shuffled Frog Leaping (SFL), Firefly Algorithm (FA), and Artificial Immune System (AIS). 

These nature-inspired methods have been widely applied to the Three-Dimensional 

Loading Capacitated Vehicle Routing Problem (3L-CVRP). For instance, Gendreau et al. (2006) 

developed a TS algorithm tailored for 3L-CVRP, while Doerner et al. (2007) combined ACO 

and TS with fast approximation algorithms to address loading constraints. Fuellerer et al. 

(2010)further advanced this by implementing an ACO algorithm with efficient loading 

heuristics for 3L-CVRP. Despite the success of TS and ACO, the literature reveals limited use 

of FA and AIS in this domain, presenting a research gap that this study aims to address by 

enhancing AIS for 3L-CVRP. 

Recent advancements have shifted toward hybrid metaheuristics to tackle increasingly 

complex 3L-CVRP variants. Meliani et al. (2022) proposed a TS approach with extreme point-

based first-fit decreasing loading, effectively handling heterogeneous fleet 3L-CVRP with 

intricate constraints. Similarly, Küçük and Yildiz (2022) introduced a constraint programming 

model hybridized with evolutionary algorithms, decomposing routing and loading phases to 

solve benchmark instances efficiently. Wang et al. (2023) developed a clustering-based NSGA-

II approach for multi-depot VRP with time windows and 3D loading constraints, optimizing 

vehicle utilization and reducing costs. Chen et al. (2023) proposed a hybrid Biogeography-

Based Optimization (HBBO) algorithm, co-optimizing bin size and 3D loading layouts, 

validated with real-world industrial cases. Qi et al. (2023) integrated Multiobjective 

Evolutionary Algorithms (MOEAs) with Adaptive Large Neighborhood Search (ALNS) to 

address transportation planning with unloading constraints and multi-frequency visits. These 

hybrid approaches highlight the growing complexity of 3L-CVRP and the need for robust, 

adaptable solutions. 

In a notable study, Ferreira et al. (2024) tackled the Green Vehicle Routing Problem with 

Two-Dimensional Loading Constraints and Split Delivery (G2L-SDVRP) using a Variable 

Neighborhood Search (VNS) metaheuristic. By integrating environmental objectives like 

minimizing CO₂ emissions with routing and loading decisions, their custom local search and 
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constraint programming approach improved benchmark solutions, offering insights applicable to 

3L-CVRP’s operational and sustainability challenges. Building on this trend, Gimenez-Palacios 

et al. (2023) addressed multidrop and split delivery conditions in 2D loading, incorporating axle 

weight and center-of-gravity constraints relevant to 3D loading extensions. 

Among the latest contributions, Leloup et al. (2025) proposed a three-phase algorithm for 

the Three-Dimensional Loading Vehicle Routing Problem with Split Pickups and Time 

Windows (3L-SPVRP-TW). Combining a savings-based heuristic, route reduction strategies, 

and General Variable Neighborhood Search (GVNS), their approach optimizes cost and 

feasibility under time-dependent travel, reachability, and stability constraints. Wang et al. 

(2025) introduced a hybrid method for the Collaborative Multidepot Split Delivery Network 

Design with Three-Dimensional Loading Constraints (CMDSDN-TDLC), using K-nearest 

neighbor clustering and Adaptive Nondominated Sorting Genetic Algorithm III (ANSGA-III) to 

balance operating costs, vehicle numbers, and loading rates. Chi et al. (2025) advanced 3L-

CVRP with relocation constraints (3L-PCVRP-RC) through a hybrid framework integrating 

Mixed Integer Linear Programming (MILP) with an improved branch-and-price algorithm and 

Backward Dynamic Programming (BDP), achieving significant cost savings and volume 

utilization. These studies collectively demonstrate the evolution of hybrid metaheuristics, 

providing a foundation for further innovation in 3L-CVRP. 

The Artificial Immune System (AIS) offers unique advantages for such problems. Unlike 

conventional single-directional search methods, AIS employs a multi-directional search via a 

population of antibodies (candidate solutions). Its duplication process clones only high-affinity 

antibodies, and a double mutation mechanism provides suboptimal solutions a second chance 

for improvement. However, researchers like Freitas and Timmis (2003), Garrett (2005), Hart 

and Timmis (2008), and Timmis (2007) have noted that traditional AIS struggles to guarantee 

global optima in large-scale combinatorial optimization due to its stochastic nature. In the 

context of 3L-CVRP, its limited ability to efficiently handle complex 3D loading constraints—

such as stability, stacking, and orientation—and the lack of mechanisms to manage routing-

loading interdependencies may contribute to its underutilization. Preliminary studies, such as 

Engin and Doyen (2004a) applying AIS to hybrid flow shop scheduling, demonstrate its 

potential for multi-dimensional optimization problems, suggesting that with proper adaptation, 

AIS could address 3L-CVRP challenges. Two strategies have been proposed to overcome these 

limitations: parameter fine-tuning through statistical design (Aytug et al., 2003; Engin & Doyen, 

2004b) and hybridization with techniques like local search or genetic algorithms (Jaradat & 

Langari, 2009; Sinha & Goldberg, 2003). In the context of 3L-CVRP, such hybridization 

remains underexplored, offering a promising avenue for this research. 

The Firefly Algorithm (FA), introduced by Yang (2008), mimics the light-emitting 

behavior of fireflies with three key rules: unisex attraction, brightness-based attractiveness 

decreasing with distance, and optimization driven by light intensity (Yang, 2009). While 

effective for continuous optimization, FA has seen limited application in 3L-CVRP as it is 

designed for continuous rather than discrete problems. Specifically, determining 3D box 

placements and managing constraints like stability or unloading sequences are challenges FA 

was not inherently designed to address, likely contributing to its underuse in this domain. 

However, preliminary studies like Altabeeb et al. (2021; 2019) and Trachanatzi et al. (2020) 

have shown FA’s effectiveness in solving capacitated VRP, particularly for routing with 

capacity constraints. These applications suggest that with modifications to handle discrete 3D 

loading, FA could offer valuable insights for 3L-CVRP, though such adaptations remain scarce. 

This research proposes an enhanced AIS framework (En-AIS) integrating domain-

specific local search, such as the "Bring-i-to-j" heuristic, and problem decomposition to address 

3L-CVRP’s complex routing and loading constraints. By building on the strengths of AIS and 

addressing its limitations, this approach aims to fill the gap in applying biologically inspired 

methods to 3L-CVRP, offering a robust alternative to existing metaheuristics like TS, ACO, and 

FA. 

 

3. Research Methods 

3.1 Natural Clonal Selection 
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In the body's immune system, clonal selection is the process by which immune cells, 

specifically B cells, that identify certain antigens are chosen to proliferate and differentiate. 

When a B cell connects with an antigen, it activates and begins clonal expansion, generating 

multiple identical cells. These clones undergo somatic hypermutation, introducing random 

variations to their receptors. This mutation enhances receptor diversity and improves the 

immune system's efficiency in identifying and countering the antigen (Burnet, 1959). 

1. Antigen Recognition: Each B cell possesses distinct receptors that can attach to specific 

antigens. When a matching antigen is encountered, the B cell binds to it. 

2. Activation and Proliferation: Upon binding to the antigen, the B cell is activated and enters a 

phase of rapid division, creating numerous identical clones. 

3. Differentiation: The cloned B cells then specialize into plasma cells and memory B cells. 

Plasma cells produce and release antibodies that directly target the antigen, while memory B 

cells persist in the body, ready to provide a quicker response if the antigen reappears. 

4. Affinity Maturation: Throughout proliferation, somatic hypermutation introduces minor 

mutations in the receptors of cloned B cells, enhancing receptor diversity. B cells with 

receptors of higher affinity for the antigen are preferentially expanded. 

5. Elimination of Self-reactive Cells: B cells that strongly bind to self-antigens (normal body 

molecules) are generally eliminated through negative selection, helping to prevent 

autoimmune reactions. 

  

3.2 Artificial Immune System for 3L-CVRP 

AIS (Artificial Immune System) is a biologically inspired method that mimics the 

immune system's ability to recognize and adapt to foreign pathogens. It is a branch of 

computational intelligence used for solving complex optimization problems by simulating 

immune responses (Dasgupta, 2006). CLONALG is a variant of AIS based on clonal selection 

theory, which focuses on the adaptability of B and T cells to detect and eliminate foreign 

invaders (non-self antigens or foreign molecules) (Burnet, 1959).  

In the context of this study, each antibody encodes a complete solution to the 3L-CVRP 

by representing a randomized customer visiting sequence. For example, an antibody such as 

C1–C2–C3 indicates that the vehicle will visit Customer 1 first, followed by Customer 2, and 

then Customer 3. Based on this sequence, the items associated with each customer are packed 

into vehicles in order. 

The algorithm begins loading from Vehicle 1 by attempting to pack all items belonging to 

the current customer using a three-dimensional packing heuristic.  

Specifically, a bottom-left-front (BLF)-inspired spatial heuristic is employed. The 

algorithm begins placing items at the bottom-left corner of the container and fills space 

horizontally to the right. Once the width is exhausted, it stacks vertically upward. When vertical 

space is also filled, it progresses front-to-back along the container’s depth. This placement 

strategy continues until the entire container space is used. 

During the optimization process, all solution candidates (antibodies) are evaluated based 

on strict feasibility rules. The 3L-CVRP incorporates two main categories of constraints: vehicle 

capacity and loading feasibility. 

Vehicle capacity constraints are enforced by ensuring that the total volume of items 

assigned to each vehicle does not exceed the vehicle’s container capacity. If an attempted 

packing exceeds the available space, the algorithm assigns the entire customer’s shipment to the 

next vehicle. 

Loading feasibility—such as placement orientation, stackability, and collision 

avoidance—is inherently handled within the packing heuristic. The 3D placement routine 

enforces all physical constraints during the packing process, ensuring that items are placed only 

when they fit without overlap, orientation violations, or unstable stacking. As a result, all 

constructed solutions are feasible by design, and no additional penalty or rejection mechanism is 

required. 

To preserve delivery consistency and operational efficiency, the system is designed to 

pack all items from the same customer within a single vehicle whenever possible. If the current 
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vehicle does not have enough capacity to accommodate the entire set of items, none of them 

will be partially loaded. Instead, the algorithm moves all that customer’s items to the next 

available vehicle. 

This grouping constraint not only ensures spatial feasibility but also enhances logistical 

practicality, aligning the solution with real-world delivery requirements such as last-mile 

logistics and simplified unloading processes. 

This encoding strategy enables the algorithm to jointly optimize both routing and loading 

in a unified solution representation. Fig. 1 illustrates this encoding approach, demonstrating how 

customer-to-item relationships are translated into vehicle-level 3D packing layouts. 

 

 

Fig. 1. Antibody encoding in the AIS framework for 3L-CVRP, illustrating customer-to-item mapping and 3D 

packing layout. 

The CLONALG algorithm can be described as follows:  

1. Randomly initialize the antibody population.  

2. For each antibody (Ab), calculate its affinity value (Aff_Val) from (21). The fitness value of 

Ab can be calculated as the main objective function (1).  

 

Aff_Val = 1 / Fitness value of Ab      (21) 

 

3. Rank the population in descending order of Aff_Val, then calculate a large group of clones 

according to the clonal factor (β) and the maximum population from (22). 

 

           (                  

          
)      (22) 

 

4. Generate clones of these antibodies based on their affinity; antibodies with higher affinity 

will produce more clones.   

5. Differentiate these clones by implementing mutation on each clone (Engin & Doyen, 2004b).  

6. Add these mutated clones to the Ab population, sort them by their affinity, and select the 

number of Ab in the top rank of the population for the next generation.  

7. Repeat steps 2 to 6 until a termination criterion is satisfied. 

In this study, key parameters of the AIS—namely, population size (Ab), number of 

generations (G), clonal factor (β), and elimination rate (%E)—were not arbitrarily assigned. 

Instead, a parameter tuning process was conducted as part of the experimental framework, 

detailed in Section 4.1. A full factorial design was employed to evaluate different parameter 
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levels systematically. The selected configurations were chosen based on their statistical 

significance using Analysis of Variance (ANOVA) across 27 problem instances. 

Although the mutation rate was not explicitly isolated as a standalone parameter, its 

influence is inherently captured through the clonal selection and variation mechanisms. The 

mutation strength is implicitly controlled by the number of clones (influenced by β) and the 

proportion of eliminated antibodies (%E), which determine the extent of diversity introduced 

per iteration. These settings enable a balance between exploration and exploitation, thereby 

improving both convergence speed and solution quality. 

Furthermore, the parameter tuning process can be considered a form of sensitivity 

analysis, as it involves testing multiple combinations of parameters and observing their impact 

on performance across various problem sizes. The results from the factorial experiments 

revealed how different levels of each parameter (AbG, β, and %E) influenced solution quality 

and convergence behavior. These insights helped identify parameter configurations that 

consistently performed well, thereby contributing to the robustness of the proposed algorithm. 

This study incorporates the “Bring-i-to-j” local search heuristic into the core optimization 

process to improve the baseline AIS. After the mutation step in each generation, a subset of elite 

antibodies is refined by repositioning one customer within its route. This local adjustment helps 

reduce unnecessary detours, shortens the total travel distance, and improves vehicle utilization. 

The algorithm intensifies its search around high-potential solutions by embedding this heuristic 

within the evolutionary loop—before the affinity evaluation and selection steps. As a result, it 

converges more quickly and consistently produces higher-quality solutions. This enhancement 

transforms the AIS into a more efficient and problem-specific solver for the 3L-CVRP. 

 

3.3 Local Search: Bring-i-to-j  

Bring-i-to-j is a proposed heuristic that is based on the idea of mutation. In this heuristic, 

a random customer i in a solution is randomly selected, and then a random another customer j is 

selected. Finally, move customer i to the adjacent location next to customer j. The concept of 

Bring-i-to-j is to move only one customer while another customer stands for waiting. This 

approach differs from traditional mutation operators that randomly swap two customers' 

positions, potentially causing disruptions to the vehicle routing plan. By moving only one 

customer, the Bring-i-to-j heuristic reduces the likelihood of disrupting the vehicle routing plan 

and improves the algorithm's efficiency. 

Bring-i-to-j will be applied to the antibody population after merging with the mutated 

clones. Fig. 2 describes the idea of this approach to help antibodies find solutions with only one 

move. For example, suppose a route where the vehicle will leave depot 0 to deliver goods to 

customers 1, 3, 4, and 2 at different locations and then return to the depot. The route 

improvement will initially randomize two customers as i and j, respectively, and customer i will 

be moved adjacency to customer j. 
 

Fig. 2. Bring-i-to-j heuristic illustration: moving customer i closer to j to improve solution feasibility. 
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Compared to the proposed En-AIS, the Firefly Algorithm (FA) follows a simpler 

movement-based mechanism with fewer problem-specific enhancements. While FA is generally 

effective for continuous optimization problems, its adaptation to combinatorial scenarios like 

the 3L-CVRP lacks embedded local search strategies. This absence limits its capability to refine 

solutions iteratively, especially in high-dimensional or constraint-heavy instances. As 

summarized in Table 3, En-AIS consistently outperforms FA in both average and best-case 

solution quality across 27 benchmark instances while maintaining a comparable computation 

time. These results highlight the importance of integrating domain-specific heuristics, such as 

Bring-i-to-j, to guide metaheuristic search processes more effectively. 

 

3.4 AIS enhancing with LS for 3L-CVRP  

This paper uses the Bring-i-to-j as the local search for the original AIS. The pseudo-

code of AIS enhanced with local search (En-AIS) is displayed in Fig. 3. 

 

Fig. 3. Pseudo-code of En-AIS. 

Compared to the traditional AIS, the proposed En-AIS explicitly integrates the Bring-i-to-

j heuristic into its evolutionary process. Specifically, En-AIS applies this local search heuristic 

after the mutation step in each generation but before evaluating the affinity and selecting the 

best antibodies. This refinement step significantly improves the solution quality by reducing 

unnecessary travel distances and enhancing loading feasibility, enabling the algorithm to 

converge faster and achieve superior solutions, especially in complex or larger problem 

instances. 

 

3.5 Firefly Algorithm for 3L-CVRP  

The main steps of FA begin with determining the intensity of the flashing light for each 

firefly. In the Firefly Algorithm, light intensity is used as a metaphor for the quality of the 
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solution—fireflies with higher light intensity represent better solutions, and other fireflies are 

attracted to them to explore the search space effectively.  

During the dual light intensity comparison loop, each firefly compares its light intensity 

with others. Fireflies with lower intensity will move towards those with higher light intensity to 

improve their solution quality. The moving distance depends on the attractiveness. The 

movement of a firefly i, which is attracted by a more attractive (i.e., brighter) firefly j, is 

determined by the equation (23). This equation models how the position of firefly i changes in 

response to the attraction, ensuring that it moves towards better solutions in the optimization 

process. 

The firefly attractiveness function calculation is displayed in (24), and the distance 

between any two fireflies i and j at xi and xj, can be defined as a Cartesian distance (rij) using 

(25). After migration, the new fireflies are assessed based on the quality of their solutions, such 

as distance minimization or cost optimization, and their light intensity is adjusted accordingly to 

reflect the updated solution quality.  

During the pairwise comparison loop, the best-so-far solution is iteratively updated. The 

pairwise comparison process is repeated until the termination criteria are satisfied. Finally, the 

best-so-far solution is visualized.  

The pseudo-code of the FA applied to solve the 3L-CVRP is illustrated in Fig. 4. In 

summary, the key steps include initializing the population of fireflies, calculating their light 

intensity based on solution quality, iteratively moving fireflies towards brighter ones, updating 

the best-so-far solution, and repeating this process until convergence criteria are met. 

            (     
 )  (     )   (     

 

 
)    (23) 

                                (24) 

    ‖     ‖  √∑ (         )
  

   

      (25) 

 
 

Fig. 4. Pseudo-code of FA. 

 

4. Results and Discussions  

This section was designed to verify the appropriate AIS parameter settings for 3L-CVRP. 

It also benchmarks the performance of AIS with the proposed heuristic in terms of 

computational efficiency and the quality of the solutions obtained. All algorithms were coded in 
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C# language, chosen due to its balance of performance, ease of use, and familiarity among the 

research team.  These algorithms were tested on a set of 27 instances introduced by (Gendreau 

et al., 2006). The number of customers ranged from 15 to 100, vehicles from 4 to 23, and items 

from 32 to 198. The computational tests were performed on a computer with an Intel Core i5-

8400 CPU @2.80GHz with 8 GB of RAM, running Windows 10 as the operating system. Each 

run was repeated 10 times, using different random seeds for each run. 

 

4.1 Experiment A  

Due to random volatility in evolutionary algorithms such as AIS, which refers to 

fluctuations in solution quality and variability in convergence, the parameter settings were 

investigated to fit the 3L-CVRP. Table 1 displays the full factorial design of AIS parameters. It 

includes the combination of the number of antibodies and number of generations (AbG), 

referring to the number of solutions generated and the required processing time. Therefore, the 

combination of AbG was defined at 22,500 to limit the computational time required based on 

prior experimentation and practical limitations observed in similar optimization problems. The 

percentage of antibody elimination (%E) and clonal factor (β) are defined as scaling factors for 

the number of clones created for selected antibodies. These parameters are important as they 

control the population's diversity and the algorithm's convergence rate, impacting both the 

exploration of the search space and the refinement of candidate solutions. 
Table 1 - Experimental factors and levels. 

Factors Levels 
Values 

Low (-1) Medium (0) High (+1) 

AbG 3 90*250 150*150 250*90 

%E 3 25% 50% 75% 

 3 0.5 1.0 1.5 

The computational results were analyzed using analysis of variance (ANOVA), a general 

linear model. ANOVA was selected because it effectively determines the influence of multiple 

factors on outcomes and identifies statistically significant differences among tested instances. 

The individual P-values for all 27 instances are summarized in Table 2. 

The first four columns of Table 2 include the instance name, total number of customers 

(Cus), vehicles (Veh), and items (Item). The results indicate that all factors have a statistically 

significant impact on small to medium-sized problems. For small problems, assigning values to 

AbG tends to produce a large number of antibodies, leading to efficient convergence. However, 

as the problem size increases, the number of antibodies decreases, requiring more generations to 

reach convergence. 

The clonal factor setting was found to be significant across almost every problem size and 

becomes increasingly crucial for optimizing very large problems. A high clonal factor value 

generates a substantial number of clones, significantly enhancing the search capability but 

requiring longer computational time. Depending on the problem size, the computational time 

can range from several hours to multiple days. 

The hypermutation rate (β) also proved statistically significant, specifically for larger 

problem sizes. As the problem complexity and solution space expand, β becomes essential for 

maintaining diversity among solutions, thereby preventing premature convergence. Without 

explicit local search, a high β value facilitates exploration of a broader solution space, allowing 

AIS to search deeper and find competitive solutions even without specialized heuristics. 

Overall, Table 2’s findings underscore the distinct role of each parameter. For small to 

medium-sized problems, a high AbG setting accelerates convergence by producing a larger 

antibody population that efficiently explores smaller solution spaces. In contrast, larger 

instances benefit significantly from a high clonal factor, which enables deeper solution 

exploration, albeit with increased computational time. β remains a critical parameter for the 

largest problem sizes, ensuring effective exploration across the expanded solution landscape by 

preventing premature convergence and enhancing search diversity. 
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Table 2 also suggests the appropriate setting for each parameter (shown in parentheses). 

Although the p-value for these settings was insignificant, the main effect plot provides insight 

into the most effective parameter configurations for different problem sizes, guiding parameter 

selection for improved optimization outcomes. 
Table 2 - P-values and parameter effects based on main effect plot. 

Instances P-Values (Minimum Values) 

Name Cus Veh Item AbG %E  

E016-03m 15 5 32 0.001 (250*90) 0.006 (25%) 0.456 (1.5) 

E016-05m 15 5 26 0.000 (250*90) 0.000 (25%) 0.034 (1.5) 

E021-04m 20 5 37 0.000 (250*90) 0.158 (25%) 0.070 (1.5) 

E021-06m 20 6 36 0.000 (250*90) 0.002 (25%) 0.033 (1.5) 

E022-04g 21 7 45 0.182 (250*90) 0.022 (25%) 0.053 (1.5) 

E022-06m 21 6 40 0.143 (250*90) 0.001 (25%) 0.002 (1.0) 

E023-03g 22 6 46 0.000 (250*90) 0.006 (25%) 0.153 (1.5) 

E023-05s 22 8 43 0.037 (250*90) 0.031 (25%) 0.045 (1.5) 

E026-08m 25 8 50 0.002 (250*90) 0.000 (50%) 0.002 (1.5) 

E030-03g 29 10 62 0.000 (250*90) 0.088 (25%) 0.068 (1.0) 

E030-04s 29 9 58 0.000 (250*90) 0.001 (50%) 0.006 (1.5) 

E031-09h 30 9 63 0.007 (250*90) 0.046 (25%) 0.007 (1.0) 

E033-03n 32 9 61 0.000 (250*90) 0.002 (25%) 0.046 (1.0) 

E033-04g 32 11 72 0.000 (250*90) 0.346 (50%) 0.013 (1.0) 

E033-05g 32 10 68 0.001 (250*90) 0.066 (25%) 0.643 (1.0) 

E036-11h 35 11 63 0.015 (250*90) 0.350 (25%) 0.069 (1.5) 

E041-14h 40 14 79 0.226 (250*90) 0.052 (50%) 0.014 (1.5) 

E045-04f 44 14 91 0.368 (250*90) 0.356 (25%) 0.019 (1.5) 

E051-05e 50 13 99 0.000 (250*90) 0.964 (50%) 0.363 (1.5) 

E072-04f 71 20 147 0.454 (150*150) 0.369 (50%) 0.000 (1.5) 

E076-07s 75 18 155 0.168 (250*90) 0.138 (25%) 0.000 (1.5) 

E076-08s 75 19 146 0.646 (150*150) 0.585 (50%) 0.000 (1.5) 

E076-10e 75 18 150 0.994 (150*150) 0.658 (50%) 0.000 (1.5) 

E076-14s 75 18 143 0.083 (150*150) 0.791 (25%) 0.001 (1.5) 

E101-08e 100 24 193 0.427 (150*150) 0.375 (50%) 0.000 (1.5) 

E101-10c 100 28 199 0.187 (150*150) 0.416 (25%) 0.000 (1.5) 

E101-14s 100 25 198 0.024 (90*250) 0.014 (50%) 0.000 (1.5) 

A functional analysis was also conducted to better interpret the impact of each parameter 

on the algorithm's behavior. The number of antibodies and generations (AbG) directly controls 

the population size and overall search breadth. A high AbG value allows broader exploration but 

increases computational time, whereas a lower value accelerates the search but may lead to 

premature convergence due to limited diversity. 
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The elimination rate (%E) manages how much of the population is replaced in each 

iteration. A high %E ensures greater diversity by discarding more low-quality antibodies but 

may disrupt the convergence process. Conversely, a low %E value helps preserve promising 

solutions but might cause stagnation. 

The clonal factor (β) governs the number of clones produced from high-affinity 

antibodies. A higher β increases local exploitation by allowing deeper refinement of reasonable 

solutions, though it adds computational cost. Lower β values reduce the computational burden 

but limit the fine-tuning of elite solutions. 

Understanding these behavioral impacts helps fine-tune parameter settings beyond 

statistical significance, ensuring robust performance across a wide range of problem instances. 

4.2 Experiment B  

This experiment aimed to compare three algorithms: AIS, En-AIS, and FA, in terms of 

minimum (Min), average (Avg), and maximum (Max) solutions and computational time usage 

(Time). Both AIS and En-AIS used the parameter settings obtained from Experiment A, while 

the FA parameters were based on (Yang, 2008). 

Table 3 summarizes the experimental results for all three algorithms across the 27 

benchmark instances. Each row presents the minimum, maximum, and average total travel 

distances obtained in 10 independent runs and the average computational time. These numerical 

values clearly show performance differences among AIS, En-AIS, and FA. 
Table 3 - Experimental results of all algorithms. 

P
ro

b
le

m
s Solutions’ Quality of Algorithms 

P
ro

b
le

m
s Solutions’ Quality of Algorithms 

Alg Min Max Avg Time(s) Alg Min Max Avg Time(s) 

E
0
1

6
-0

3
m

 AIS 344.12 344.41 344.38 6.798 

E
0
3

3
-0

5
s AIS 1661.44 1880.89 1767.90 14.06 

En-

AIS 
344.12 344.12 344.12 9.112 

En-

AIS 
1551.42 1649.02 1603.80 19.47 

FA 344.12 346.70 344.85 7.840 FA 1753.99 1952.10 1864.72 16.43 

E
0
1

6
-0

5
m

 AIS 340.55 340.55 340.55 5.750 

E
0
3

6
-1

1
h
 AIS 725.38 806.06 767.58 13.52 

En-

AIS 
340.55 340.55 340.55 7.953 

En-

AIS 
709.55 757.20 735.56 19.11 

FA 340.55 340.55 340.55 6.649 FA 747.87 847.03 804.18 15.61 

E
0
2

1
-0

4
m

 AIS 397.89 408.46 402.40 7.727 

E
0
4

1
-1

4
h
 AIS 957.13 1057.01 1009.28 16.20 

En-

AIS 
386.52 410.38 396.52 11.537 

En-

AIS 
916.55 971.83 955.54 22.27 

FA 392.55 436.81 410.20 8.884 FA 1014.44 1137.08 1047.54 18.75 

E
0
2

1
-0

6
m

 AIS 440.68 459.45 449.99 7.945 

E
0
4

5
-0

4
f AIS 1507.82 1673.24 1599.41 22.09 

En-

AIS 
440.68 440.94 440.76 10.75 

En-

AIS 
1424.21 1506.48 1484.06 26.38 

FA 440.68 464.90 455.65 9.06 FA 1578.52 1728.03 1662.97 25.36 

E
0
2

2
-0

4
g
 AIS 479.82 519.83 496.71 9.33 

E
0
5

1
-0

5
e AIS 1095.07 1245.54 1165.53 23.18 

En-

AIS 
475.48 495.30 478.92 12.78 

En-

AIS 
921.29 984.66 952.62 29.51 

FA 479.82 576.53 512.75 10.94 FA 1124.20 1245.78 1171.36 26.83 

E
0
2

2
-0

6
m

 AIS 509.36 531.30 518.15 8.28 

E
0
7

2
-0

4
f AIS 907.34 1032.89 965.38 33.02 

En-

AIS 
504.39 516.04 509.62 11.65 

En-

AIS 
736.78 792.66 759.07 42.96 

FA 514.50 543.50 521.50 9.41 FA 888.67 1006.82 954.96 38.11 

E
0
2

3

-0
3
g
 

AIS 891.07 920.17 902.93 9.75 

E
0
7

6

-0
7
s 

AIS 1669.05 1843.45 1750.59 33.01 
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P
ro

b
le

m
s Solutions’ Quality of Algorithms 

P
ro

b
le

m
s Solutions’ Quality of Algorithms 

Alg Min Max Avg Time(s) Alg Min Max Avg Time(s) 

En-

AIS 
883.48 930.88 894.91 13.18 

En-

AIS 
1343.22 1415.37 1379.26 44.95 

FA 896.38 957.64 918.78 11.22 FA 1683.39 1848.84 1767.51 38.01 

E
0
2

3
-0

5
s AIS 886.11 983.42 924.71 9.27 

E
0
7

6
-0

8
s AIS 1634.09 1832.78 1712.18 31.53 

En-

AIS 
882.06 939.09 897.82 12.75 

En-

AIS 
1385.08 1432.16 1417.25 43.91 

FA 892.57 988.65 933.13 10.73 FA 1761.14 1905.48 1826.67 36.37 

E
0
2

6
-0

8
m

 AIS 687.82 760.89 720.96 10.32 

E
0
7

6
-1

0
e AIS 1689.84 1824.79 1745.02 31.66 

En-

AIS 
672.35 715.52 685.72 14.15 

En-

AIS 
1341.75 1389.39 1364.64 43.92 

FA 712.01 799.81 739.33 11.88 FA 1730.84 1854.86 1789.97 36.52 

E
0
3

0
-0

3
g
 AIS 952.42 1079.63 1026.75 12.50 

E
0
7

6
-1

4
s AIS 1675.04 1845.43 1761.30 33.08 

En-

AIS 
918.20 972.76 953.26 17.50 

En-

AIS 
1289.18 1394.28 1341.93 42.87 

FA 942.27 1091.18 1024.61 14.62 FA 1775.90 1930.58 1831.96 37.69 

E
0
3

0
-0

4
s AIS 951.96 1074.34 1009.66 12.50 

E
1
0

1
-0

8
e AIS 2285.44 2631.79 2434.78 43.25 

En-

AIS 
980.65 967.15 933.36 16.60 

En-

AIS 
1745.38 1898.22 1810.02 51.53 

FA 948.16 1098.22 1028.17 14.25 FA 2357.58 2573.67 2466.56 49.58 

E
0
3

1
-0

9
h
 AIS 643.83 701.38 674.82 13.19 

E
1
0

1
-1

0
c AIS 2813.29 3109.39 2951.42 47.07 

En-

AIS 
639.65 650.06 647.06 17.82 

En-

AIS 
2024.56 2141.21 2072.24 58.57 

FA 660.91 738.75 687.63 15.46 FA 2750.89 3213.27 2980.37 53.51 

E
0
3

3
-0

3
n
 AIS 2953.63 3291.73 3011.44 12.84 

E
1
0

1
-1

4
s AIS 2468.47 2589.54 2530.23 45.61 

En-

AIS 
2918.24 3010.08 2961.43 18.45 

En-

AIS 
1876.06 2040.93 1942.61 60.38 

FA 3014.23 3480.72 3315.50 14.81 FA 2505.91 2763.47 2633.82 51.99 

E
0
3

3
-0

4
g
 AIS 1802.82 1902.69 1852.95 14.40 

 

     

En-

AIS 
1588.81 1711.49 1658.05 19.77      

FA 1809.83 2061.82 1927.22 16.55      

The experimental results in Table 3 reported that En-AIS's minimum, maximum, and 

average solutions were superior to those produced by other algorithms for all problem sizes, 

with an average improvement of 15-20% in solution quality compared to AIS and FA. This 

indicates that En-AIS finds high-quality solutions across various scenarios more effectively. The 

Bring-i-to-j heuristic significantly improved the quality of the obtained solution by enhancing 

local search capabilities and allowing the algorithm to escape local optima more efficiently. 

Specifically, the heuristic moves a selected customer to a new position in the route, creating a 

new neighborhood solution that helps explore different configurations and overcome local 

stagnation. On average, En-AIS achieved a 17.42% improvement in solution quality over AIS 

and a 13.97% improvement over FA across all test instances. The most significant improvement 

was observed in instance E033-04g, where En-AIS outperformed AIS by 10.50% and FA by 

13.98%. These results validate the statistical superiority of En-AIS in both minimum and 

average performance metrics. 
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From a computational perspective, the proposed En-AIS demonstrates a favorable 

balance between solution quality and processing time. Although the integration of the Bring-i-

to-j local search and dual mutation introduces additional overhead compared to the baseline 

AIS, the performance gains justify the moderate increase in computation time. On average, En-

AIS required approximately 15–25% more time than standard AIS or FA (as shown in Table 3), 

but consistently delivered better minimum and average solution values across all instances. This 

efficiency suggests that En-AIS is suitable for mid-sized and large-scale problems, particularly 

in planning environments where solution quality is prioritized over runtime optimality. 

To statistically verify the observed differences, a one-way ANOVA was conducted using 

the average values from all 27 benchmark instances for AIS, En-AIS, and FA. The results, 

summarized in Table 4, indicated that the differences among the three algorithms were not 

statistically significant at the 0.05 level (p = 0.519). Furthermore, a Tukey post-hoc test 

confirmed that the mean solution qualities of all algorithms fell into the same grouping, 

suggesting that the average performance differences were not statistically distinguishable. En-

AIS consistently produced lower mean values than the other algorithms, indicating practical 

advantages in solution quality across diverse scenarios. Visual summaries of the mean 

comparisons and confidence intervals are provided in Fig. 5 and 6. 
Table 4 - One-way ANOVA results comparing solution quality across 27 instances. 

Source DF SS MS F p-value 

Algorithm 2 753902 376951 0.66 0.519 

Error 78 44396230 569182   

Total 80 45150132    

 

 

Fig. 5. Mean solution quality of AIS, En-AIS, and FA with 95% confidence intervals. 
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Fig. 6. Tukey HSD test results comparing algorithms’ mean performance. 

En-AIS also demonstrated better scalability than other algorithms, consistently providing 

superior solutions even as the problem size increased. Specifically, En-AIS was tested on 

problem sizes ranging from 15 customers and 4 vehicles to 100 customers and 23 vehicles, 

consistently outperforming other algorithms. This scalability makes En-AIS particularly well-

suited for complex real-world logistics problems, such as the 3L-CVRP, where the number of 

customers, vehicles, and items can vary significantly. 

However, En-AIS required longer computational time than AIS and FA. While En-AIS 

may require more time, it is essential to note that computational time is just one of several 

factors to consider when selecting an algorithm. The increased computational time is a trade-off 

for achieving higher solution quality, making En-AIS a better choice when accuracy is a 

priority. Other factors, such as accuracy, scalability, and complexity, should also be considered 

when making a final decision. 

To further illustrate En-AIS's impact, Fig. 7 presents the percentage improvement of En-

AIS over AIS across various problem instances. Notable improvements are observed, 

particularly in high-dimensional problems, with peaks as high as 29.79% for specific instances. 

This visual representation underscores En-AIS's ability to consistently achieve significant 

performance gains over AIS across all tested scenarios, providing a clear advantage in complex 

problems where precision and stability are critical. 
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Fig. 7. Percentage Improvement of En-AIS over AIS across various problem instances. 

These findings underscore the critical role of incorporating local search mechanisms 

within heuristic algorithms like AIS. Without local search, AIS often converges prematurely or 

becomes trapped in suboptimal regions of the solution space, particularly in high-dimensional 

and highly constrained optimization problems. Integrating local search in En-AIS not only 

refines the solution quality but also expedites convergence by effectively navigating local 

optima. This enhancement enables AIS-based algorithms to perform competitively with other 

advanced metaheuristics, proving that local search is essential for balancing exploration and 

exploitation, ultimately elevating AIS from a baseline heuristic to a more versatile and powerful 

optimization tool. 

Table 5 presents a consolidated view of the core design elements that distinguish En-AIS 

from conventional AIS frameworks and typical metaheuristic methods. 
Table 5 - Design Features and Performance Benefits of En-AIS 

Aspect Advantage in En-AIS 

Flexibility Dual-mutation strategy increases the ability to escape local optima. 

Precision Bring-i-to-j local search refines routing and loading feasibility directly. 

Convergence Speed Selectively accepts only improved solutions, speeding up convergence. 

Diversity Control Partial elimination and regeneration help maintain population diversity. 

Hybrid Design Integrates local search inside AIS loop, not just as post-processing 

Problem Adaptability Tailored specifically for 3L-CVRP, balancing exploration and exploitation 

effectively 

These combined features contribute to the proposed approach's overall robustness, 

adaptability, and effectiveness. 

Beyond benchmark performance, En-AIS holds significant practical potential in real-

world logistics and transportation applications. The algorithm's ability to simultaneously 

optimize delivery routing and three-dimensional loading makes it suitable for industries such as 

e-commerce, retail replenishment, and freight logistics, where both spatial constraints and 

delivery efficiency are critical. For instance, companies involved in multi-stop deliveries or 

operating vehicle fleets with space limitations can benefit from En-AIS by reducing the number 

of required trips, improving vehicle utilization, and adapting to diverse item sizes and delivery 

orders. Its moderate runtime and scalable structure also enable integration into real-time or 

semi-real-time decision support systems, enhancing operational flexibility in dynamic logistics 

environments. This adaptability positions En-AIS as a viable solution for complex and evolving 

challenges in modern supply chains. 

Therefore, the results of this benchmarking exercise indicate that En-AIS is the most 

suitable choice for solving the 3L-CVRP, despite its higher computational time. The algorithm's 

ability to consistently provide superior solutions and its enhanced local search capabilities—
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such as more profound exploration of solution neighborhoods and effective diversification 

strategies—make it a more robust option for tackling complex routing and loading problems. 

Furthermore, although comparative analysis with popular baseline models such as 

Genetic Algorithm (GA) or Ant Colony Optimization (ACO) is highly valuable, we deliberately 

limited our comparisons to algorithms implemented under the same experimental framework—

namely AIS and FA. This is due to the methodological differences among studies in terms of 

packing heuristics, constraint formulations, and implementation transparency, which may make 

direct comparisons with external works less interpretable or fair. Nonetheless, benchmarking 

with standard metaheuristics remains an important direction for future work, particularly when 

harmonized loading strategies and benchmark sets become more available. 

 

5. Conclusion  

This research introduced an enhanced Artificial Immune System (En-AIS) integrated with 

the "Bring-i-to-j" local search heuristic to effectively address the complexities of the Three-

Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP). The En-AIS 

framework demonstrated significant improvements in solution quality compared to traditional 

AIS and the Firefly Algorithm (FA) across a comprehensive set of benchmark instances. Key 

structural features—including dual-mutation strategies, selective update mechanisms, embedded 

local search, and controlled antibody replacement—enabled En-AIS to achieve faster 

convergence and superior solution stability, particularly in large and tightly constrained problem 

scenarios. 

A rigorous experimental analysis, supported by statistical validation using ANOVA and 

Tukey tests, confirmed the practical advantage of En-AIS despite the lack of statistically 

significant mean differences at the 0.05 level. The practical implications highlighted indicate 

that En-AIS is well-suited for real-world logistics, particularly for e-commerce, retail 

replenishment, and freight transportation, where simultaneous optimization of routing and 

loading under space and delivery constraints is critical. The method's computational efficiency 

and adaptability make it a strong candidate for integration into dynamic, real-time logistics 

planning systems. 

However, several potential limitations must be acknowledged. First, the benchmark 

instances considered are static and may not fully represent the dynamic and uncertain conditions 

inherent in real-world logistics, such as fluctuating customer demands, traffic variability, or 

unexpected operational disruptions. Second, this study assumes fixed orientations for loaded 

items and does not explicitly handle practical constraints such as fragility, stacking stability, or 

loading sequence preferences. Third, while En-AIS performs well on the evaluated scale, 

computational time may still present challenges when scaled to extremely large or highly time-

sensitive operations. 

Future research directions include addressing these limitations by extending En-AIS to 

dynamic and stochastic variants of the 3L-CVRP, incorporating adaptive or machine-learning-

based parameter tuning, and exploring hybridization with other optimization frameworks to 

enhance scalability and robustness. Additionally, practical testing on real-world datasets and 

explicit handling of item-specific constraints such as fragility or orientation preferences would 

substantially strengthen the method's industrial applicability and validation. 

In conclusion, the proposed En-AIS represents a significant methodological advancement, 

providing a robust, flexible, and efficient optimization tool for the complex, multi-dimensional 

challenges encountered in modern logistics and transportation management. 

 

Acknowledgment 

The work was supported by the Kasetsart University Research and Development Institute 

(KURDI), Kasetsart University. 

 

References 

Altabeeb, A. M., Mohsen, A. M., Abualigah, L., & Ghallab, A. (2021). Solving capacitated 

vehicle routing problem using cooperative firefly algorithm. Applied Soft Computing, 
108, 107403. https://doi.org/https://doi.org/10.1016/j.asoc.2021.107403  

https://doi.org/https:/doi.org/10.1016/j.asoc.2021.107403


Thapatsuwan et al …                          Vol 6(2) 2025: 1019-1039 

1038 

 

Altabeeb, A. M., Mohsen, A. M., & Ghallab, A. (2019). An improved hybrid firefly algorithm 

for capacitated vehicle routing problem. Applied Soft Computing, 84, 105728. 

https://doi.org/https://doi.org/10.1016/j.asoc.2019.105728  

Aytug, H., Knouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve production 

and operations management problems: a review. International Journal of Production 

Research, 41(17), 3955–4009. 

http://zerlina.ingentaselect.com/vl=776754/cl=41/nw=1/fm=docpdf/rpsv/cw/tandf/002075

43/v41n17/s1/p3955  

Bortfeldt, A. (2012). A hybrid algorithm for the capacitated vehicle routing problem with three-

dimensional loading constraints. Computers & Operations Research, 39(9), 2248-2257. 

https://doi.org/10.1016/j.cor.2011.11.008  

Burnet, F. M. (1959). The clonal selection theory of acquired Immunity. Cambridge University 

Press.  

Chen, C. S., Lee, S. M., & Shen, Q. S. (1995). An analytical model for the container loading 

problem. European Journal of Operational Research, 80(1), 68-76. 

https://doi.org/10.1016/0377-2217(94)00002-t  

Chen, M., Huo, J., & Duan, Y. (2023). A hybrid biogeography-based optimization algorithm for 

three-dimensional bin size designing and packing problem. Computers & Industrial 
Engineering, 180, 109239. https://doi.org/https://doi.org/10.1016/j.cie.2023.109239  

Chi, J., He, S., & Song, R. (2025). Solving capacitated vehicle routing problem with three-

dimensional loading and relocation constraints. Computers & Operations Research, 173, 

106864. https://doi.org/https://doi.org/10.1016/j.cor.2024.106864  

Christensen, S. G., & Rousøe, D. M. (2009). Container loading with multi-drop constraints. 

International Transactions in Operational Research, 16(6), 727-743. 

https://doi.org/10.1111/j.1475-3995.2009.00714.x  

Dasgupta, D. (2006). Advance in artificial immune systems. IEEE computational intelligence 

magazine, 1(4), 40-49.  

Doerner, K., Fuellerer, G., Hartl, R., Gronalt, M., & Iori, M. (2007). Metaheuristics for the 

vehicle routing problem with loading constraints. Networks, 49, 294-307. 

https://doi.org/10.1002/net.20179  

Engin, O., & Doyen, A. (2004a). Artificial immune systems and applications in industrial 

problems. G. U. Journal of Science, 17(1), 71-84.  

Engin, O., & Doyen, A. (2004b). A new approach to solve hybrid flow shop scheduling 

problems by artificial immune system. Future Generation Computer Systems, 20(6), 
1083-1095. http://www.sciencedirect.com/science/article/B6V06-4CT62DH-

1/2/765bb875fea11e60b8b71a7fac507c7d  

Ferreira, K. M., de Queiroz, T. A., Munari, P., & Toledo, F. M. B. (2024). A variable 

neighborhood search for the green vehicle routing problem with two-dimensional loading 

constraints and split delivery. European Journal of Operational Research, 316(2), 597-
616. https://doi.org/https://doi.org/10.1016/j.ejor.2024.01.049  

Freitas, A., & Timmis, J. (2003). Revisiting the foundations of artificial immune systems: A 

problem-oriented perspective. In J. Timmis, P. J. Bentley, & E. Hart (Eds.), Lecture Notes 

in Computer Science (Vol. 2787, pp. 229-241). Springer.  

Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2010). Metaheuristics for vehicle routing 

problems with three-dimensional loading constraints. European Journal of Operational 
Research, 201(3), 751-759. https://doi.org/10.1016/j.ejor.2009.03.046  

Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evol Comput, 13(2), 145-
177. https://doi.org/10.1162/1063656054088512  

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A Tabu Search Algorithm for a 

Routing and Container Loading Problem. Transportation Science, 40(3), 342-350. 

https://doi.org/10.1287/trsc.1050.0145  

Gimenez-Palacios, I., Alonso, M. T., Alvarez-Valdes, R., & Parreño, F. (2023). Multi-container 

loading problems with multidrop and split delivery conditions. Computers & Industrial 
Engineering, 175, 108844. https://doi.org/https://doi.org/10.1016/j.cie.2022.108844  

https://doi.org/https:/doi.org/10.1016/j.asoc.2019.105728
http://zerlina.ingentaselect.com/vl=776754/cl=41/nw=1/fm=docpdf/rpsv/cw/tandf/00207543/v41n17/s1/p3955
http://zerlina.ingentaselect.com/vl=776754/cl=41/nw=1/fm=docpdf/rpsv/cw/tandf/00207543/v41n17/s1/p3955
https://doi.org/10.1016/j.cor.2011.11.008
https://doi.org/10.1016/0377-2217(94)00002-t
https://doi.org/https:/doi.org/10.1016/j.cie.2023.109239
https://doi.org/https:/doi.org/10.1016/j.cor.2024.106864
https://doi.org/10.1111/j.1475-3995.2009.00714.x
https://doi.org/10.1002/net.20179
http://www.sciencedirect.com/science/article/B6V06-4CT62DH-1/2/765bb875fea11e60b8b71a7fac507c7d
http://www.sciencedirect.com/science/article/B6V06-4CT62DH-1/2/765bb875fea11e60b8b71a7fac507c7d
https://doi.org/https:/doi.org/10.1016/j.ejor.2024.01.049
https://doi.org/10.1016/j.ejor.2009.03.046
https://doi.org/10.1162/1063656054088512
https://doi.org/10.1287/trsc.1050.0145
https://doi.org/https:/doi.org/10.1016/j.cie.2022.108844


Thapatsuwan et al …                          Vol 6(2) 2025: 1019-1039 

1039 

 

Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. 

Applied Soft Computing, 8(1), 191-201. 

http://www.sciencedirect.com/science/article/B6W86-4N1T1KX-

2/2/9c970acc97e5f21f3167ce10f7fff74f  

Jaradat, M. A. K., & Langari, R. (2009). A hybrid intelligent system for fault detection and 

sensor fusion. Applied Soft Computing, 9(1), 415-422. 

http://www.sciencedirect.com/science/article/B6W86-4SJ2WR9-

1/2/f4c842db7bc71cb35de51854d5fd8853  

Küçük, M., & Topaloglu Yildiz, S. (2022). Constraint programming-based solution approaches 

for three-dimensional loading capacitated vehicle routing problems. Computers & 

Industrial Engineering, 171, 108505. 

https://doi.org/https://doi.org/10.1016/j.cie.2022.108505  

Leloup, E., Paquay, C., Pironet, T., & Oliveira, J. F. (2025). A three-phase algorithm for the 

three-dimensional loading vehicle routing problem with split pickups and time windows. 

European Journal of Operational Research, 323(1), 45-61. 

https://doi.org/https://doi.org/10.1016/j.ejor.2024.12.005  

Meliani, Y., Hani, Y., Lissane Elhaq, S., & El Mhamedi, A. (2022). A tabu search based 

approach for the Heterogeneous Fleet Vehicle Routing Problem with three-dimensional 

loading constraints. Applied Soft Computing, 126, 109239. 

https://doi.org/10.1016/j.asoc.2022.109239  

Placek, M. (2023). Logistics industry worldwide - statistics & facts. Retrieved 19 December 
from https://www.statista.com/topics/5691/logistics-industry-worldwide/ 

Qi, R., Li, J.-q., & Liu, X.-f. (2023). A knowledge-driven multiobjective optimization algorithm 

for the transportation of assembled prefabricated components with multi-frequency visits. 

Automation in Construction, 152, 104944. 

https://doi.org/https://doi.org/10.1016/j.autcon.2023.104944  

Sinha, A., & Goldberg, D. (2003). A survey of hybrid genetic and evolutionary algorithms. 
ILLIGAL Technical Report 2003004. https://doi.org/citeulike-article-id:1460878  

Timmis, J. (2007). Artificial Immune Systems - today and tomorrow. Natural Computing, 6, 1-

18.  

Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated 

vehicle routing problem. Discrete Applied Mathematics, 123(1), 487-512. 

https://doi.org/https://doi.org/10.1016/S0166-218X(01)00351-1  

Trachanatzi, D., Rigakis, M., Marinaki, M., & Marinakis, Y. (2020). A firefly algorithm for the 

environmental prize-collecting vehicle routing problem. Swarm and Evolutionary 

Computation, 57, 100712. https://doi.org/https://doi.org/10.1016/j.swevo.2020.100712  

Wang, Y., Wei, Y., Wang, X., Wang, Z., & Wang, H. (2023). A clustering-based extended 

genetic algorithm for the multidepot vehicle routing problem with time windows and 

three-dimensional loading constraints. Applied Soft Computing, 133, 109922. 

https://doi.org/https://doi.org/10.1016/j.asoc.2022.109922  

Wang, Y., Wei, Y., Wei, Y., Zhen, L., & Deng, S. (2025). Collaborative multidepot split 

delivery network design with three-dimensional loading constraints. Transportation 

Research Part E: Logistics and Transportation Review, 196, 104032. 

https://doi.org/https://doi.org/10.1016/j.tre.2025.104032  

Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Luniver press.  

Yang, X.-S. (2009). Firefly Algorithms for Multimodal Optimization. Stochastic Algorithms: 

Foundations and Applications, Berlin, Heidelberg. 

 

http://www.sciencedirect.com/science/article/B6W86-4N1T1KX-2/2/9c970acc97e5f21f3167ce10f7fff74f
http://www.sciencedirect.com/science/article/B6W86-4N1T1KX-2/2/9c970acc97e5f21f3167ce10f7fff74f
http://www.sciencedirect.com/science/article/B6W86-4SJ2WR9-1/2/f4c842db7bc71cb35de51854d5fd8853
http://www.sciencedirect.com/science/article/B6W86-4SJ2WR9-1/2/f4c842db7bc71cb35de51854d5fd8853
https://doi.org/https:/doi.org/10.1016/j.cie.2022.108505
https://doi.org/https:/doi.org/10.1016/j.ejor.2024.12.005
https://doi.org/10.1016/j.asoc.2022.109239
https://www.statista.com/topics/5691/logistics-industry-worldwide/
https://doi.org/https:/doi.org/10.1016/j.autcon.2023.104944
https://doi.org/citeulike-article-id:1460878
https://doi.org/https:/doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/https:/doi.org/10.1016/j.swevo.2020.100712
https://doi.org/https:/doi.org/10.1016/j.asoc.2022.109922
https://doi.org/https:/doi.org/10.1016/j.tre.2025.104032

