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ABSTRACT  

Activation functions are a critical component in the feature extraction layer of deep learning models, 

influencing their ability to identify patterns and extract meaningful features from input data. This study 

investigates the impact of five widely used activation functions—ReLU, SELU, ELU, sigmoid, and tanh—

on convolutional neural network (CNN) performance when combined with sharpening filters for feature 

extraction. Using a custom-built CNN program module within the researchers’ machine learning library, 

Analytical Libraries for Intelligent-computing (ALI), the performance of each activation function was 

evaluated by analyzing mean squared error (MSE) values obtained during the training process. The 

findings revealed that ReLU consistently outperformed other activation functions by achieving the lowest 

MSE values, making it the most effective choice for feature extraction tasks using sharpening filters. This 

study provides practical and theoretical insights, highlighting the significance of selecting suitable 

activation functions to enhance CNN performance. These findings contribute to optimizing CNN 

architectures, offering a valuable reference for future work in image processing and other machine-

learning applications that rely on feature extraction layers. Additionally, this research underscores the 

importance of activation function selection as a fundamental consideration in deep learning model 

design. 

Keywords: Convolutional Neural Network, Activation Function, Feature Extraction, Sharpening Filter, 

Image Processing, Deep Learning 

 

1. Introduction  

In recent years, deep learning as an essential modeling technique in artificial intelligence 

has achieved cutting-edge performance in solving numerous machine learning tasks (Liu et al., 

2019), such as voice analysis (Khaskhoussy & Ayed, 2023), pattern recognition (K. 

Jermsittiparsert et al., 2020), and object classification (Vaidya & Paunwala, 2019). Researchers 

have introduced various strategies to enhance the efficiency of neural network training, focusing 

on selecting optimal activation functions. As inputs pass through neurons, they are multiplied by 

weights, and the weighted sum—along with a bias term—is processed by an activation function. 

This function determines each neuron's output, ultimately shaping the network's predictions. 

Activation functions, either linear or non-linear, influence the network's ability to model 

complex relationships (Wong et al., 2022). Rectified linear units (ReLU) are standard activation 

functions used to develop modern intelligent applications today (Eckle & Schmidt-Hieber, 

2019). Neural networks place the activation function as the central decision-making unit 

(Szandała, 2020), and therefore the activation function is a crucial component to be considered 

(Xiangyang et al., 2023). 

Several studies compared the use of activation functions for case studies such as the 

production and consumption prediction system for electricity power usage using a multilayer 

neural network (Salam et al., 2021). It was identified that different activation functions have 

varied impacts on the performance of neural networks, especially in tasks involving image data 

processing. This paper investigates how activation functions perform within the feature 

extraction layer of convolutional neural networks (CNNs), focusing on their role in image 

dataset processing. CNNs rely on activation functions to maintain essential features, filter out 

redundant data, and effectively map extracted features (Qiumei et al., 2019). This study 

provides a comparative analysis of activation functions in CNN's feature extraction layer, 
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contributing to better activation function choices and, ultimately, more efficient deep learning 

models for image analysis tasks. 

Feature extraction in CNNs benefits significantly from sharpening filters, which enhance 

essential details such as edges and contours within images. By calculating the gradient 

magnitude, these filters highlight edges where the pixel intensity changes significantly, aiding 

CNNs in identifying informative features for numerous tasks, including object recognition. 

However, sharpening filters must be applied carefully as they can also amplify noise or create 

unwanted edge effects. When fine-tuned for specific image types, sharpening filters can 

significantly enhance CNN performance by clarifying crucial structural details (Pham, 2022). 

The capability of sharpening filters to enhance critical structural details forms the basis for this 

paper's focus on comparing activation functions in the feature extraction layer of CNNs using 

sharpening filters (Lin et al., 2021). 

This paper offers a unique contribution through the development of Analytical Libraries 

for Intelligent-computing (ALI), a Java-based software library designed to streamline research 

in machine learning. ALI provides an integrated module that simplifies the process of running 

deep learning experiments without requiring researchers to build programs from scratch. It 

supports the comparative analysis of activation functions within feature extraction layers, a key 

focus of this study. Additionally, ALI generates models that can be seamlessly embedded into 

desktop, mobile, and web applications developed in Java. ALI also includes several machine 

learning algorithms to address diverse problem-solving needs such as automatic clustering 

(Shodiq et al., 2019), hierarchical K-Means (Ramadijanti et al., 2018), independent clustering, 

k-nearest neighbors (Subhan et al., 2017), and neural networks (Shodiq et al., 2017). By 

integrating these features, ALI is a valuable tool for advancing research and development in 

machine learning. 

Consequently, this paper provides several contributions, including: (1) a qualitative 

analysis of the effect of activation functions on CNN performance in image-processing tasks, 

and (2) a quantitative analysis involving evaluating the performance of activation functions 

against computational loads that impact execution speed. 

This paper presents the experimental study using similar CNN architecture to try different 

activation functions. The tested activation functions feature certain limitations as follows: (1) 

The examined activation functions are used in the same feature extraction layer, (2) The settings 

in the feature extraction layer are not replaced when a different activation function is utilized, 

and (3) This study aims to show that one of all these functions works with a low MSE value 

with images in the input vector and convolution layers. 

 

2. Literature Review 

The researchers reviewed several previous studies related to activation function 

comparison on artificial neural networks with the aim of establishing research position and 

demonstrating the differences. 

Abdulwahed et al. (2021) investigated the performance of various activation functions in 

multilayer neural network models for electricity power prediction systems. The study evaluated 

activation functions such as sigmoid, hyperbolic tangent, ReLU, leaky ReLU, ELU, and swish 

using the root mean squared error (RMSE) metric. However, the study lacks a comprehensive 

statistical descriptive analysis of the models’ performance, such as minimum, maximum, and 

mean values, which are crucial for a deeper understanding of activation function behavior 

during model training (Salam et al., 2020). 

Similarly, Lee (2020) compared activation functions in a reinforcement learning-based 

neural network model for a 2D racing game. While this study observed activation functions 

such as ReLU6, leaky ReLU, and CReLU using total reward as a performance metric, it did not 

include a comparison of computational efficiency. Understanding the computational impact of 

activation functions is essential in scenarios where processing time is a critical factor. 

The existing literature on activation functions in neural networks highlights their critical 

role in model performance, particularly in feature extraction and optimization tasks. Several 

studies examined the effects of popular activation functions such as ReLU, sigmoid, tanh and 

their variants on various neural network architectures. In evaluating performance, these studies 
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typically focused on metrics such as accuracy, convergence rates, and error minimization. 

However, their limitation necessitates a detailed comparative analysis of computational time and 

descriptive statistics during the training process, such as minimum, maximum, and mean error 

values. Addressing these gaps would provide a more holistic understanding of how activation 

functions impact efficiency and performance. 

In contrast, this study focuses on convolutional layers in a CNN model. It compares 

activation functions based on mean squared error (MSE) values and visualizes the learning 

process through line charts and observations of statistical descriptions such as minimum, 

maximum, and mean values. Furthermore, this study incorporates an analysis of computational 

time, providing a more holistic evaluation of activation function performance. By addressing the 

gaps in prior studies, such as the need for more statistical descriptive analysis and computational 

comparisons, this research offers a novel contribution to the field. It enhances the understanding 

of activation function performance in convolutional layers. In this paper, the researchers 

compare the performance of convolutional layers for feature extraction by measuring the MSE 

values of the examined activation functions. This study examines five activation functions: 

ReLu, SeLu, ELU, sigmoid, and tanh. The researchers visualize the learning process through 

multiple line charts and observe statistical descriptions to support the comparative analysis of 

activation functions. In addition, the researchers also pay attention to the difference in 

computation time between the activation functions in the convolution layer of the learning 

process. 

 

3. Research Methods 

This research employed a systematic three-stage methodology to explore the performance 

of different activation functions in CNNs with the aim of providing a comprehensive analysis 

that compares the error of activation functions and evaluates their computational efficiency and 

statistical properties. This structured approach ensured the reliability of the findings and 

highlighted the practical implications of activation function selection for feature extraction tasks 

in deep learning. 

 

Fig. 1. Main Stages of Research 

The first stage involved image preprocessing, in which input data were prepared to 

enhance their quality and compatibility with the CNN model. This process included applying a 

sharpening filter to emphasize critical image features, resizing the images to ensure uniformity, 

and normalizing pixel values to stabilize the training process. These steps were essential for 

reducing noise and highlighting relevant patterns in the data, thus providing a strong foundation 

for model training (Rachmawati & Darmawan, 2024). 

The study focused on model training for activation function comparison in the second 

stage. The five activation functions—ReLU, SeLU, ELU, sigmoid, and tanh—were 

implemented within the feature extraction layers of a CNN model. Each activation function was 

tested to observe its impact on model performance, measured using the MSE metric. 

Additionally, the computational time required for training with each activation function was 

recorded to evaluate their efficiency. This stage provided critical insights into how activation 

functions influence the learning process regarding accuracy and computational resources. 

The final stage, result analysis, was dedicated to interpreting the findings. The 

performance of each activation function was visualized using line charts, and detailed statistical 

descriptions—such as the minimum, maximum, and mean MSE values—were presented. In 

addition, the differences in computational time were analyzed to highlight the trade-offs 

between accuracy and efficiency for each activation function. This thorough analysis identified 

the strengths and weaknesses of the activation functions and offered practical guidance for 

selecting the most suitable function for similar tasks. 



Rachmawati et al …                          Vol 6(2) 2025: 1254-1267 

1257 

 

This study adopted a methodical approach to uncover the complexities of activation 

function performance in CNNs. Integrating image preprocessing, comparative model training, 

and detailed result analysis provided a holistic evaluation of the activation functions in question. 

The findings contribute to the growing body of knowledge in deep learning, offering valuable 

insights for researchers and practitioners aiming to optimize feature extraction in convolutional 

neural networks. 

 

Activation Functions 

CNNs are network structures with multi-layers that can be trained and feature three 

primary stages: feature extraction, nonlinear activation, and downsampling (Qiumei et al., 

2019). Convolution layers equipped with activation functions have a particular threshold value 

to reduce the contribution value of less relevant features or increase the contribution value of 

significant features, making pattern recognition easier (Chegeni et al., 2022). 

Neural networks of any type are composed of layers of neurons containing mathematical 

functions that combine inputs with weights that amplify or dampen the inputs to give 

importance to the corresponding inputs (Lee, 2020). The output of a neuron is a weighted sum 

of its inputs plus a bias. It passes through the activation function to establish whether and to 

what extent the input should progress further through the network for classification (Lee, 2020). 

The researchers examined several commonly used activation functions, including ReLu, SeLu, 

ELU, sigmoid, and tanh. 
Table 1 - Range of Activation Function 

Activation Function Range 

ReLU 0, +∞ 

SELU -5, 10 

ELU -α, +∞ 

Sigmoid -1, 1 

Tanh 0, 1 

ReLU is an activation function that preserves the value sent from the feedforward neuron 

if it is a positive number and replaces 0 if it is a negative number (Liu et al., 2019). The derived 

function changes the value sent from the backpropagation neuron to 1 if the value is positive 

and vice versa (Job et al., 2022). Although ReLU offers advantages such as easier alleviation  of 

vanishing gradients and fast execution processes due to formula simplicity, the network 

experiences the problem of excess neuron death, causing many features to be lost due to values 

sent from feedforward/backpropagation neurons dominating existing features as many values 

are mapped to 0 (Hu et al., 2019). 

 

 ( )     (   ) (1) 

  ( )                (2) 

 

Scaled exponential linear unit (SELU) is an activation function that preserves the value 

sent from the feedforward neuron if the value is positive and replaces the exponential linear 

formulation with additional scaling parameters (Liu et al., 2019). SELU includes the 

development of the exponential linear unit (ELU) activation function so that SELU can be 

identical to ELU (Liu et al., 2019). SELU relies on weight initialization if insufficient 

initialization results in unstable network performance. However, if the initialization of weights 

is appropriate, it facilitates weight regulation and strengthen learning because of its self-

normalizing nature (Sakketou & Ampazis, 2019). 

 

 ( )     (    )            (3) 

  ( )                   (4) 

 

Exponential linear unit (ELU) is an activation type with an alpha variable that controls the 

output value, especially for negative values from the input of feedforward neurons. ELU helps 

alleviate the problem of vanishing gradients by capturing both linear and exponential values 

optimized during the backpropagation process (Narmadha & Vijayakumar, 2019). By specifying 
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values in the alpha variable ranging from 0 to 1, ELU applies normalization across all network 

layers without the need for additional normalization layers (Cococcioni et al., 2020). 

 

 ( )    (    )            (5) 

  ( )    ( )               (6) 

Sigmoid is an activation function that ranges from 0 to 1 and is commonly used for 

probability prediction models as output values. Thus, sigmoid is extremely popular in solving 

binary classification problems because it is an essential example of complex operations using 

division and exponential (Shatravin et al., 2022). In addition, sigmoid has a distributed 

implementation that effectively approximates other functions. 

 

 ( )  
 

      (7) 

  ( )   ( )(   ( )) (8) 

 

Tanh is a type of activation that produces an output value with a range of -1 to 1, where a 

negative input value gives an output close to -1, a positive input value gives an output close to 1, 

and a zero input value produces a zero output (Kalyanam & Katkoori, 2023). Because tanh 

produces a value of 0, it produces dead neurons such as ReLU during computational runs. Tanh 

is often used in recurrent neural networks (RNNs) as it produces periodic responses at time 

sequences (Nguyen et al., 2021). 

In this study, the researchers compared the activation functions ReLU, SeLU, ELU, 

sigmoid, and tanh within the feature extraction layers of a CNN model to address specific gaps 

and challenges in deep learning research. These activation functions were selected since they 

represent diverse behaviors and characteristics, making them suitable for evaluating the trade-

offs between accuracy, computational efficiency, and stability in the learning process. 

ReLU (rectified linear unit) and its variants, SeLU (scaled exponential linear unit) and 

ELU (exponential linear unit), are prevalent in deep learning due to their ability to mitigate the 

vanishing gradient problem, which is critical for training deep networks. ReLU is 

computationally efficient and promotes sparse activation (Ismail et al., 2023), while SeLU and 

ELU offer additional advantages in stabilizing the learning process (Pappas et al., 2023), 

especially in cases where negative outputs are significant. However, their relative performance 

varies depending on the dataset and architecture, necessitating a comparative analysis. 

On the other hand, sigmoid and tanh are classical activation functions widely used in 

earlier neural network models. Sigmoid maps input values to a range between 0 and 1, which is 

helpful for probabilistic interpretations but suffers from vanishing gradient issues 

(Chattopadhyay & Gayen, 2023). Tanh, an extension of sigmoid, maps values to a range 

between -1 and 1, providing better convergence in certain cases due to its symmetric nature (Liu 

et al., 2023). Despite their limitations, these functions remain relevant for understanding the 

trade-offs in model performance. 

 

Dataset  

The researchers used image datasets published on the Kaggle site for easier binary or 

multiple image classification1. The image datasets featured two main folders, namely training 

and test, making it easier to separate data. Subsequently, there were three sub-folders of each 

main folder with similar titles: empty, good, and crack. The researchers set the balance from the 

original dataset number by making a 90:10 comparison for the training and test data. In 

addition, the researchers performed an undersampling technique for each class's data to ensure 

that no class has the most members because the researchers were still testing the reliability of 

the deep learning library developed under ideal data conditions. 
 

 

 

                                                             
1
 https://www.kaggle.com/datasets/frankpereny/broken-eggs 
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Table 2 - Image Dataset Distribution 

Subset Label Amount Total 

Training Crack 90 270 

 Good 90  

 Empty 90  

Test Crack 10 30 

 Good 10  

 Empty 10  

Before processing the image dataset into a convolutional neural network's feature 

extraction layer, the researchers preprocessed the dataset by cropping the center-focused image 

and resizing it to 150x150 pixels. Grayscale was used as the color mode for numerical values 

for further processing. The researchers only paid attention to the contour of the egg crack line 

based on the visible contrast without requiring color review, thus requiring less computational 

power while processing the dataset as fewer mathematical operations were performed (Zeger et 

al., 2021). 

 
(a) 

 
(b) 

Fig. 2. Difference Between Original And Grayscale Image Before Entering Extraction Feature Layer In CNN Model 

The researchers normalized the data against grayscale values that had been converted into 

numerical arrays to keep the weight values in the network within a linear range. This reduced 

numerical differences in the pixel range (e.g., 0-255), aiding training stability and convergence 

and simplifying the process of training algorithms that are sensitive to scale differences 

(Herwanto et al., 2021). 

 

        
      

         
 (11) 

 
The researchers processed the image dataset using sharpening filters with two levels: light 

and heavy. Sharpening filters, commonly known as high-pass filters, are one of the techniques 

in image processing used to increase the clarity of image details by strengthening the contrast 

around the edges of objects in the image to make them appear sharper (Bogdan et al., 2024). 
Table 3 - Matrix of Sharpening Filters 

Sharpening Filter Matrix 

 

Light 

 

[
       
        
       

] 

 

 

Heavy [
         
         
         

] 

 

Light sharpening refers to the contrast around the edges of objects in the image, which 

does not appear sharper than heavy sharpening. The sharpness of the filter can be adjusted to the 

needs of processing images with a specific purpose as excessive use of sharpening filters causes 

increased noise when the model learns the pattern (Demir & Kaplan, 2023). The use of 

sharpening filters in the convolution layer intends to improve the network's ability to identify 

and retrieve essential features of the image, which can then be used for tasks such as 

classification, object detection, or segmentation (Choi et al., 2023). 
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(a) 

 
(b) 

Fig. 3. Difference Between Light And Heavy Sharpening Filter On An Image Sample 

 

CNN Module 

In this activation function comparison, the researchers developed and utilized their deep 

learning library. In the previous development iteration, the researchers developed and published 

a deep neural network module on a site with an affiliate's domain. In the current development 

iteration, the researchers were developing a CNN module that was part of their machine-

learning library. The researchers developed the CNN module to make it easier for other 

researchers and practitioners to run experiments to find the best model architecture to solve their 

problems. 

The researchers developed the CNN module with several concepts, including the 

exploitation of design patterns for the code interface for users’ ease of understanding. To  

guarantee correctness of functionalities, the researchers performed unit testing before 

publishing. This study also showed that the researchers' deep learning library supports the 

execution of experiments related to selecting hyperparameters suitable for the case study. Table 

4 below outlines the functionalities that the researchers provided in the CNN module that the 

researchers were developing. 
Table 4 - Functionalities of Researchers’ CNN Module 

Layer Class 

Feature Extraction • Convolution1D 

• Convolution2D 

Downsampling • Subsample1D 

• Subsample2D 

• Globalsample1D 

• Globalsample2D 

• Flatten 

Support • Input1D 

• Input2D 

• Padding1D 

• Padding2D 

The researchers provided a CNN module for processing one-dimensional data, such as 

text, and two-dimensional data, such as images. However, CNN modules for processing three-

dimensional data, such as 3D images, have not been developed. To meet research needs, the 

development of the researchers’ machine learning library will continue as software products 

require updates and improvements over time to correct errors and enhance features. 

 

4. Results and Discussion 

Based on the limitations stated in the introduction, the researchers compared the 

activation functions of the convolutional layers with hyperparameters. Table 5 details the 

convolutional layers tested in the study. 
Table 5. Parameters in Feature Extraction Layer 

Parameter Value 

Class Convolution2D 

Filter Light and Heavy Sharpening (3x3) 

Stride 1 

Dilation 1 

Learning rate 1.0 

Metric Mean Squared Error 

Epoch 20 
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Gradient descent is a concept used in training neural networks to find the slightest error 

when updating the weights of each feature to achieve better performance (Goodfellow et al., 

2016). The gradient descent process starts with a random initialization of weights applied to the 

training data, and the resulting prediction is compared with the actual label to calculate the error 

(Tian et al., 2023). The influence of each weight on the error is subsequently calculated and 

adjusted in proportion to the gradient using the learning rate to reduce the error gradually 

(Suganya & Sasipraba, 2023). This process is repeated in various iterations (epochs) until the 

model performs sufficiently. 

The researchers balanced the distribution of the number of classes and normalized the 

numerical values of the data to ensure that the training of convolution models using either heavy 

or light sharpening filters with activation functions, either SELU, ReLU, ELU, sigmoid or tanh,  

converges the training and test data. In addition, the convolution layer for sharpness feature 

extraction can recognize patterns from objects in the image dataset. 
 

Fig. 4. Training History Of Convolution Layer With Sharpening Filter Using Relu Activation Function 

The researchers selected MSE as the evaluation method of the model learning process in 

this case study because MSE provides a continuous measurement of the difference between the 

predicted and actual values, which helps the model to optimize for better convergence to 

produce a feature representation that matches the original image as much as possible. Thus, 

MSE is a metric sensitive to major or minor differences in the model's error in capturing 

essential features in the image (Ye & He, 2024). 

 

    
 

 
∑ (    ̃ )

  
    (12) 

 
The researchers utilized multiple line charts to enable easier comparison of the movement 

patterns of the activation functions during the learning period represented in the same epoch 

sequence. The convolution layer using the sharpening filter showed different fluctuations among 
the five tested activation functions. Subsequently, the researchers gained knowledge regarding 

the stable activation function in minimizing the small error value in the feature extraction 

process to sharpen the contours of the objects in the image. 

 
(a) Light Sharpening Filter  

 
(b) Heavy Sharpening Filter 

Fig. 5. Moving MSE Of Activation Functions In Feature Extraction Layer Using Sharpening Filter During Training 

Process 
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Based on Fig. 5 (a), tanh is the most prominent activation function compared to other 

activation functions because there is a sharp increase in MSE value from the beginning to the 

end of learning. Meanwhile, other activation functions demonstrate MSE values that tend to 

decrease over time. Tanh is widely used in RNN models, various statistical analyses, and 

mathematical models that assume asymmetric and sharp distributions. Thus, using tanh in the 

feature extraction layer using the light sharpening filter is unsuitable because it cannot create 

sharp contours from a matrix containing values not too far from 0. Meanwhile, the convolution 

layer for feature extraction using the light sharpening filter equipped with ReLU, ELU, or SELU 

activation functions has close MSE values because the three activation functions contain similar 

basis, namely conditional mechanism of less than 0 and more than 0 being processed differently. 

Based on Fig. 5 (b), the movement of convolutional layer learning for feature extraction 

using the heavy sharpening filter with the tanh activation function appears unstable because a 

decrease in MSE value continues to increase MSE value drastically. However, the tanh function 

obtains the lowest MSE value compared to other activation functions. Meanwhile, the 

convolutional layer for feature extraction using a heavy sharpening filter with the sigmoid 

activation function has the highest MSE value but gradually decreases as the learning process 

progresses. On the other hand, the convolutional layer for feature extraction using the heavy 

sharpening filter with the ReLU activation function has a low MSE value but increases as the 

learning process progresses. The MSE movement of the convolutional layer for feature 

extraction using the heavy sharpening filter with the ELU and SELU activation functions has a 

different MSE value at the beginning. However, as the learning process progresses, the MSE 

values are very close because the formulas are almost the same due to the SELU function being 

a development of the ELU function. 

Using a sharpening filter, the researchers analyzed the performance comparison between 

utilizing activation functions on the convolutional layer by understanding the descriptive 

statistics of the learning processes (Yan et al., 2022). Descriptive statistics enables easy 
observation of the difference between the performance of activation functions. The researchers 

used three parameters in the descriptive statistics in this observation, including min, max, and 

mean, enabling the determination of the smallest MSE value, the highest MSE value, and the 

average MSE value calculated based on the learning period performed by the convolution layer 

to extract features using the sharpening filter. 
Table 6 - Statistic Descriptive for MSE Comparison of Activation Function Impact in Feature Extraction Layer 

Sharpening 
Filter 

Activation 
Function 

Statistic Descriptive 

Min Max Mean 

Light ELU 0.308251 0.335505 0.318057 

 ReLU 0.284030 0.284082 0.284056 
 SELU 0.223798 0.254559 0.244833 

 Sigmoid 0.350463 0.426229 0.380470 

 Tanh 0.071863 2.830942 1.471629 

Heavy ELU 0.331237 1.182580 0.407933 
 ReLU 0.231934 0.268378 0.256704 

 SELU 0.331171 0.889216 0.392233 

 Sigmoid 0.877779 1.945771 1.416613 

 Tanh 0.016775 0.896488 0.248847 

Table 6 demonstrates that tanh has a significant difference in MSE value between the 

lower and upper bounds compared to other activation functions to be applied to the convolution 

layer using light and heavy sharpening filters. Tanh could be an activation function that 

optimizes learning in convolutional layers requiring contour sharpness to object lines in the 

image. However, tanh can also reduce learning performance because it fails to bring the feature 

prediction value closer to the target value. 

Meanwhile, ReLU has the closest difference in MSE value between the lower and upper 

bounds compared to other activation functions to be applied to the convolutional layer using 

light and heavy sharpening filters. The use of ReLU in CNN models stabilizes the learning 

process because it is elementary in its calculation. By replacing negative values with zero and 

maintaining positive values unchanged, model convergence can be achieved in the early stages 

of training, and higher accuracy can be obtained with fewer iterations (epochs). 
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Hyperparameter is one factor that affects the length of computation time in the learning 

process of deep learning models, in addition to dataset size and resources. The activation 

function in the learning process affects the computation time since it is used to calculate the 

activation of each node in the artificial neural network, which must be evaluated repeatedly. 

Activation functions with more complex mathematical formulas in their calculations will 

significantly impact computation time as they have more effort in mathematical operations. 
Therefore, the researchers also observed the computation time taken by the convolution layer 

using the predefined activation functions. During this comparison experiment, the researchers 

utilized a MacOS operating system device, and a Java programming language IDE called 

IntelliJ Idea. 
Table 7 - Comparison of Computation Time  

Activation 

Function 

Sharpening Filter 

Light 
(seconds) 

Heavy 
(seconds) 

ELU 197.974 179.694 

ReLU 182.912 262.877 

SELU 205.612 264.940 

Sigmoid 229.402 178.534 

Tanh 205.883 204.843 

Table 7 shows that the pruning of the image dataset in the convolutional layer using the 

light sharpening filter with the ReLU activation function takes the least time, and the sigmoid 

activation function takes the longest time. The image dataset processing on the convolutional 

layer using a heavy sharpening filter with the sigmoid activation function takes the least time, 

and the SELU activation function takes the longest. Computation time cannot be used as a 

complete benchmark to determine the activation function that is the fastest in processing as the 

resources used are of different types and inequality in usage time (for instance, running a deep 

learning model at the same time as running other programs so that it divides memory). 

Three findings were identified through the comparison experiment conducted as follows: 

(1) Improved performance with increasing epochs does not always lead to a reduced MSE 

value, as demonstrated in Fig. 5, (2) Based on Table 5 and Fig. 5 (b), tanh is not only utilized 

for RNN but also feature extraction in CNN, and can even produce a much smaller MSE value 

than ReLU, but the fluctuation of the learning process could be more stable, (3) SELU is an 

activation function that works optimally for feature extraction to sharpen the contours finely, as 

evidenced by Fig. 5 (b). 

 

Discussion 
The findings in this study reveal important insights into the performance of various 

activation functions (ReLU, SELU, ELU, sigmoid, and tanh) within convolutional layers for 

feature extraction using sharpening filters. These insights build on and expand existing 

knowledge in the neural networks field by highlighting the strengths and limitations of each 

activation function in different scenarios. To provide a deeper understanding of these findings, 

this discussion compares the results with those from relevant prior research and explores their 

broader implications for feature extraction tasks in CNNs. 

Based on Table 6, tanh demonstrates a significantly more extensive range of MSE values 

than other activation functions. This fluctuation indicates that while tanh achieves a lower MSE 

in some instances, its instability may hinder its practical application in tasks requiring consistent 

performance. The sharp increase and subsequent fluctuations in MSE values observed in Fig. 5 

further support this, suggesting that tanh's saturation effects contribute to its sensitivity to small 

changes in input values. These results align with existing studies that indicate tanh's suitability 

for RNNs due to its ability to handle sequential data but challenge the notion of its optimal use 

in CNNs for feature extraction. However, this study’s findings also indicate that tanh can be 

leveraged for specific feature extraction tasks where achieving delicate contours is more critical 

than ensuring stability. 

Conversely, ReLU consistently exhibited stable MSE performance across the training 

period, as shown in Figures 4 and 5. This stability stems from ReLU's simplicity, where 

negative values are replaced by zero, and positive values remain unchanged, leading to efficient 
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gradient flow and faster convergence. These results align with prior research highlighting 

ReLU's effectiveness in deep learning models, particularly its computational efficiency and 

ability to avoid the vanishing gradient problem. The minimal difference in MSE values between 

the lower and upper bounds also underscores ReLU's reliability, making it a strong candidate for 

tasks requiring consistent feature representation. 

SELU and ELU, as shown in Table 6 and Figure 4, demonstrated comparable 

performance in terms of MSE, especially during the later stages of training. SELU's slightly 

improved performance over ELU can be attributed to its self-normalizing property, which 

ensures stable learning by maintaining mean activations close to zero and unit variance. This 

property becomes particularly beneficial in feature extraction tasks involving sharpening filters, 

where maintaining consistent activation is critical for capturing intricate details in image data. 

These findings align with theoretical expectations but extend existing knowledge by 

demonstrating SELU's specific advantage in enhancing contour sharpness in CNNs. 

While historically significant, sigmoid exhibited the highest MSE values and the slowest 

computational time, particularly when paired with light sharpened filters, as indicated in Table 

7. This underperformance can be attributed to sigmoid's tendency to saturate, leading to 

vanishing gradients and slower convergence. Despite its limitations, sigmoid may still find 

niche applications where its probabilistic output range between 0 and 1 is necessary, though 

other activation functions in feature extraction tasks generally outperform it. 

The computational time analysis further highlights the trade-offs between activation 

function complexity and performance. For instance, ReLU's straightforward mathematical 

formulation allows for faster computation, while SELU's additional operations result in longer 

processing times. These findings emphasize the importance of considering computational 

efficiency alongside accuracy when selecting activation functions, particularly for large-scale 

real-world applications. 

This study provides novel insights compared to prior research by juxtaposing 

performance metrics such as MSE and computational time with theoretical properties of 

activation functions. For example, while Lee (2020) demonstrated the effectiveness of ReLU6 

in reinforcement learning tasks, this study’s findings show that ReLU and its variants also excel 

in feature extraction tasks within CNNs. Similarly, while Abdulwahed et al. (2021) highlighted 

the superiority of ReLU and Leaky ReLU in general neural network models, this study nuances 

these findings by demonstrating SELU's potential for specialized tasks such as sharpening 

object contours. 

This study comprehensively evaluated five activation functions in CNNs for feature 

extraction using sharpening filters. Integrating performance metrics with theoretical analysis 

offers valuable guidance for researchers and practitioners in selecting activation functions 

tailored to specific tasks. The findings underscore the importance of balancing stability, 

accuracy, and computational efficiency, paving the way for further exploration into activation 

functions' role in optimizing deep learning architectures. 

 

5. Conclusion 

In this paper, the researchers conducted a comparative analysis of five activation 

functions (ReLU, SELU, ELU, sigmoid, and tanh) applied in the feature extraction layer of 

convolutional neural networks (CNNs) using sharpening filters. The findings indicate that the 

choice of activation function plays a crucial role in feature extraction performance. ReLU 

demonstrates superior performance in achieving the smallest error values across light and heavy 

sharpening  filters. This result highlights the suitability of ReLU for feature extraction tasks 

requiring sharp contour detection and efficient convergence during training. On the other hand, 

tanh exhibits significant fluctuations in performance, underscoring the importance of activation 

function stability for consistent results. These findings contribute to the growing knowledge of 

neural network optimization by emphasizing the necessity of aligning activation function 

characteristics with specific filter requirements in feature extraction layers. 

The implications of this research are twofold. The study provides practical guidance for 

selecting activation functions in real-world CNN applications, particularly for image-processing 

tasks requiring sharpening filters. Secondly, it lays the groundwork for further exploration into 
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optimizing other architectural elements of CNNs, such as filter types, hyperparameter tuning, or 

layer configurations. In future research, the researchers aim to expand this study by evaluating 

the interaction of activation functions with other factors, such as loss functions and optimization 

algorithms, to develop robust and adaptable models for diverse artificial intelligence tasks. This 

work aims to bridge the gap between theoretical insights and practical implementations, 

contributing to more powerful and efficient neural network models for real-world applications. 
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