
  Journal of Applied Engineering and Technological Science 
                      Vol 5(2) 2024: 1182-1198                                    

   

1182 

MODIFICATION OF LOAD CALCULATION IN THE DIJKSTRA 

ALGORITHM TO ACHIEVE HIGH THROUGHPUT AND LOW LATENCY 

ON 5G NETWORKS 
 

Eko Kuncoro Adiyanto*1, Sri Wahjuni2, Hendra Rahmawan3 

Department of Computer Science, IPB University, Bogor, Indonesia1,2,3 

ekokuncoroadiyanto@apps.ipb.ac.id*, my_juni04@apps.ipb.ac.id, hrahmawan@apps.ipb.ac.id 

 
Received : 22 March 2024, Revised: 25 May 2024, Accepted : 05 June 2024 

*Corresponding Author 

 
ABSTRACT  

throughput for high-resolution remote video surveillance. 5G cellular network as today's most advanced 

wireless technology will be the perfect match for Agriculture 4.0 requirements. In its maturity process, 

the 5G network requires various optimizations, one of which is by making route algorithm calculation 

modifications in terms of determining the best route for a data packet from a data source to a data 

destination. To achieve this goal, it requires research in the form of experiments using network simulator. 

Software Define Network (SDN) as network programmability is used to modify route in Dijkstra 

algorithm calculation, and run several use case that simulate 5G network characteristic. By adding 

bandwidth utilization and latency parameters into the routing algorithm calculations, 5G requirements 

such as packet loss below 1% and latency below 5ms are successfully achieved.  These positive results 

may be further tested on real 5G networks, if in the future this research also gets positive results in 

testing on a real 5G network, then cellular network customers will be able to experience an increase in 

service quality. 
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1. Introduction  

The world population is expected to reach 8 billion people in 2025, and 10 billion people 

in 2050 (Araujo et al., 2021). This increment will have a huge impact on the need for food. The 

food producers, namely farmers and livestock breeders, are expected to focus more on 

developing agriculture that is smarter, more efficient, and more productive so that it can meet 

the future of human food needs. Indonesia, as the country with the 4th largest population in the 

world, has designed an agricultural strategy that can meet food sustainability for the future.  

According to data from the Indonesian National Food Agency 2023, food imports in 

Indonesia are still quite high. For example, even though as an agricultural tropical country, 

Indonesia still has to import 3.5 million rice throughout 2023 to meet national food needs. To 

overcome this, modern agriculture is needed through agriculture 4.0, so that production can 

increase so that it can meet the food needs of the Indonesian people. KPPIP, as a part of 

Indonesia's Government, has several National Strategic Projects, including a program named 

Agriculture Digital Maturity, that is powered by agriculture 4.0 technology (KPPIP, 2007). 

There are three main components in agriculture digital maturity strategy: 
1. Agricultural Information System  

2. Agriculture e-Commerce Platforms  

3. Precision Agriculture  

 

Fig. 1. Agriculture Digital Maturity Framework 
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These three components will then run well if they are supported by three main pillars 

(according to Figure 1), namely connectivity, information access, and applications and 

processes. In Figure 1, at the top left, broadband connectivity is the first thing mentioned, 

because broadband connectivity is the basis of a country's infrastructure to achieve a digital 

economy. This broadband connectivity can be likened to road, electricity, or canal infrastructure 

that must be built to connect various regions and strategic locations in a country.  

Cellular-based broadband wireless connectivity is the most effective solution for 

broadband connectivity that offers the widest coverage and delivers very high throughput. 

Currently, in many countries, cellular technology operates on 2G, 4G, and 5G network 

generations. While the 4G network is still dominating the cellular network landscape, 5G is 

waiting for the moment to explode in the future. In its maturity process, the 5G network requires 

various optimizations, one of which is by making route algorithm calculation modifications in 

terms of determining the best route for a data packet from a data source to a data destination. In 

Agriculture 4.0, there are several different network service requirements that require different 

5G network specifications. Each of different services in 5G uses different resources on the 

network, from radio network, to transport to the core network. This resource difference uses the 

network slicing method, where the configuration is done on SDN (Barakabitze et al., 2020).  

A reliable network system layer is required, to enable the optimum 5G network system 

that meets the necessary specifications. The Internet Protocol (IP) transport layer is one of the 

critical components of this network system, as it plays an essential role in carrying Internet 

traffic from one BTS point to another until it reaches the core network that connects it to the 

world Internet network. Routing efficiency is one of the critical parameters in an IP transport 

network, as it determines the method for finding the most efficient path or route so that data 

packets sent on a network can arrive more quickly.  

There is one routing algorithms are widely used today, namely Dijkstra algorithm. 

Dijkstra algorithm, as the shortest path algorithm to find the destination route path from the 

source point (Dijkstra, 1959), is the base algorithm for the OSPF network routing protocol in the 

Interior Gateway Protocol (IGP). Dijkstra find the shortest path to destination from a single 

source, not multi source (Cormen, 2009). These type of algorithm match with the network 

routing requirement from one single source to one single destination. Dijkstra’s algorithm use 

general graphs with non-negative edge costs. The efficiency of Dijkstra’s algorithm heavily 

relies on efficient priority queues (Melhorn & Sanders, 2007).  

OSPF is widely used in 4G and 5G cellular networks, including LAN, WAN, and DC 

networks. OSPF needs to achieve fast convergence to topology changes, it requires highly 

scalable operation on part of OSPF to avoid routing instability (Goyal et al., 2012). For serving 

5G network, it's a must to improve OSPF’s convergence speed as well as scalability of the 5G 

Networks. Software Defined Network (SDN) in 5G networks has become a new standard as it 

provides a platform for automation, programmability, independent devices, and intelligent and 

controlled distributed networks (Goransson & Black, 2016). Therefore, the use of OSPF on 

SDN is commonplace. However, one of the limitations of OSPF is that the Dijkstra algorithm's 

load calculation still only uses bandwidth configuration or reference bandwidth (Akhtarkavan & 

Karami, 2015), which is less relevant to 5G network needs.  

There are many research that related to modification or extend the dijkstra algorithm, in 

order to get better performance or applying it in many different aspect of life. One studies used 

the latency parameter as a substitute for the bandwidth parameter in OSPF network routing load 

calculations (M Abdelghany et al., 2022). In other research, the Dijkstra algorithm was used in a 

data center network load-balancing routing scheme using bandwidth utilization as a cost 

parameter (Adekokun et al., 2017). Dijkstra’s algorithm itself has been internally improved by 

developing a way to avoid heap in path calculation which is useful in the efficiency of sparse 

networks especially in road traffic networks (Huang et al., 2013). Dijkstra's improvisation has 

also been applied to determine flexible weight values in path selection in the data storage 

structure (Zhang et al., 2009).  

Optimization of the Dijkstra algorithm is not only carried out on network routing but is 

also carried out on flood route routing during a disaster (Wang, 2017). Developed Dijkstra 

shortest path search algorithm can improve storage efficiency and reduce meaningless operation 
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(Chao, 2010). Extended Dijkstra algorithm for surface path planning of mobile robots improves 

the accuracy of the surface optimization path in single-robot single-target and multi-robot multi-

target path planning tasks (Luo et al.,  2020). Implementation of extended Dijkstra’s algorithm 

in SDN resulted that extended dijkstra outperforms the original dijkstra and other algorithms 

(Jiang et al., 2014).  

Dijkstra improvement in order to reduce the number of iterations and to find easily and 

quickly the shortest path (Kadry et al., 2011). Dijkstra's improvisation on storage structure and 

searching area to make travel route planning more efficient (Fan & Shi 2010). Dijkstra's 

improvisation on the data storage structure, as well as ignoring reversed nodes and flexible 

weight values in path selection (Huang et al., 2013). Improvisation in shortest-path 

determination using Node-Wise Limited Arc Interdiction (Khachiyan et al., 2006). Discussion 

of the use of Dijkstra on Google maps with distance load calculations, traffic & delays (Lanning 

et al., 2014). Extended Dijkstra Algorithm for Improvisation in shortest-path selection using the 

bidirectional search method (Noto & Sato 2000).  

Engineering Fast Route Planning Algorithms for Improvisation in terms of shortest-path 

selection using the priority queues method (Sanders & Schultes 2007). Improvising dijkstra the 

exit mechanism to avoid loops and how to select vertices more optimally (Shu-Xi 2012). 

Dijkstra modifications to the path selection process to avoid loops (Wei et al., 2019). 

Improvisation using value iteration and Q-learning methods for path planning 2D eight-

neighbor grid map (Wenzheng et al., 2019). Improvisation of Dijkstra algorithm processing 

using parallel computing with multi-core (Wu et al., 2015). Improvisation by reforming the 

feature matrix of precursor node and adding a shortest path tree (Xiao & Lu 2010). 

Improvisation to avoid the heap process in Dijkstra, making it more suitable and efficient for 

use in large sparse networks (Xu et al., 2007). Using the Dijkstra algorithm for path finding in 

spatial applications, the cost parameters used are distance, time, path capacity, and path type 

(Zhang et al., 2009). Improvising dijkstra algorthm by the node search process using the heap 

pairing method (Zhang et al., 2012). 

Base on several research above, there are still a room for improvements to combine 

latency, bandwidth utilization, and bandwidth configuration into dijkstra routing algorithm load 

calculation. To implement this experiment, Software Defined Network (SDN) simulator is used 

to run the custom network programmability. It is expected that this research will be able to 

contribute to optimizing the 5G network. By this better network performance,  it will deliver 

better real time monitoring sensor or high resolution remote video surveillance in agriculture 4.0 

application. 

 

2. Literature Review 

2.1 Dijkstra Algorithm 

The Dijkstra algorithm was introduced by Dutch computer scientist Edsger Wybe 

Dijkstra in 1959. Dijkstra's algorithm is a greedy algorithm that is used to solve the problem of 

finding the shortest graph (shortest path problem) from a route that has a direction with a 

different weight (edge weight) for each route. The input of this algorithm is a weighted directed 

graph G, and an origin s in a set of lines V. The output of this algorithm is the shortest path 

route from an origin point to a destination point. Dijkstra is the most popular algorithm used for 

many years in methods for finding the best path (shortest path) from a source to a destination. 

Dijkstra has become more popular than other shortestpath algorithms such as Floyd Warshal, 

Johnson and Bellman-Ford because Dijkstra has been used as the basis for the OSPF routing 

protocol on IP networks. The OSPF routing protocol has been used by almost all internet service 

provider networks in the world. 

 

2.2 Software Defined Network 

The 5G network is an evolution of a very complex wireless device network. The use of 

Software Defined Network (SDN) is a new way of how a 5G network can be managed centrally 

and scalably. On traditional networks, there is no freedom to customize the program of the 

network, because all routing protocols and configurations have been hard coded by the 

manufacturer. With SDN, every programmer has the freedom to improvise using the network 
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programmability available in SDN (Goransson & Black, 2014). This freedom makes the door 

for improvement and development wider open for anyone, not just network device 

manufacturers. Therefore, this research uses the SDN simulator, so that the Dijkstra algorithm, 

which has previously been hardcoded by router vendors, can now be easily modified to 

calculate the load load. 

SDN can improve network performance in terms of network management, control and 

data handling (Hao et al., 2014). Apart from SDN, there are several other Software Defined that 

can also improve the performance of other computing technologies such as Software Defined 

Security (SDSec), Software Defined Storage (SDS), Software Defined Infrastructure (SDI) 

(Goransson & Black, 2014). In general, SDN is divided into three parts, namely SDN devices or 

routers, SDN controllers, and SDN applications. The function of SDN Devices is only to 

forward packets, according to the direction of the flow table from the centralized controller. The 

SDN controller sends a flow table via the control plane to each SDN device using the openflow 

protocol (Kreutz et al., 2014). SDN separates the control plane and data plane functions. The 

SDN application works on top of the SDN controller, to control the network using the 

northbound API. SDN applications can be programmed to suit the needs of how a data packet 

flows from one point to another. (Goransson & Black, 2014). 

 

2.3 5G Network 

There are three main services on the 5G network, where these three services can be 

differentiated in terms of resources according to the service needs requested by customers. 

These three main services are (Sutton, 2018)( Tang et al., 2021) : 

1.  Enhanced Mobile Broadband (eMBB). 

 This technology offers internet at very fast speeds, where in real conditions, the average 

throughput obtained by users can reach more than 100 Mbps. 

2.  Ultra-Reliable Low-Latency Communications (URLLC) 

 For sensory devices or real-time applications, that may not require super-fast throughput, but 

prefer near real-time connection, 5G can provide a maximum latency or delay of up to 1 ms. 

3.  Massive Machine-Type Communications (mMTC) 

 In the future, the number of communication devices, such as IoT, will far exceed the number 

of devices currently used by humans, such as cell phones or smartphones. In this case, 5G 

technology can process 1 million devices per 1 square km area. 

 

2.4 IP Routing 

There are various IP routing protocols that can be used, in general routing protocols are 

divided into two, namely static and dynamic. Dynamic routing is divided into two, namely 

Interior Gateway Protocol, with various types of routing protocols such as RIP, IGRP, EIGRP 

which are Distance based, and OSPF, IS-IS which are Link-State based. Then the second is the 

Exterior Gateway Protocol, the routing protocol that is popularly used is BGP (Sirika et al., 

2016) 

The use of the OSPF IP routing protocol is widely used in current IP networks, both in 

4G networks and datacentre networks. The OSPF protocol uses load parameters in the form of 

bandwidth configuration only. By using SDN, it is hoped that the Dijkstra algorithm, which is 

the basis of the OSPF protocol, can be modified by adding latency and bandwidth utilization 

parameters to the load calculation, so that the IP routing protocol can better suit the needs of the 

5G network. (Karami & Akhtarkavan, 2015)(M Abdelghany et al., 2022). 

 

2.5 Quality of service 

To get better quality experience, 5G technology increase the footprint of the underlying 

transport infrastructure by requiring new control plane facilities capable of supporting the 

specific needs characterizing end-to-end connections between mobile devices and their targets 

(Palmieri 2020). The fundamental point of network performance that can be used to measure the 

improvement of the network is the Quality of Service  (QoS) parameter. Quality of Service aims 

to manage network resources so that the end-user experience of a session can be maximized 

because not all user sessions will have the same experience, therefore it is necessary to regulate 
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the quality of user sessions (Szigeti et al., 2014). This network resource setting can be based on 

several parameters such as the minimum and maximum limits for delay or latency, the buffer 

size of a queuing method so that packet drops or packet loss do not occur, and the minimum and 

maximum limits for throughput speed (Bojovic et al., 2022). The QoS parameters such as 

latency, throughput, and packet loss are obtained by a user session, whether they are in 

accordance with the expected limits or not. The limitations of these QoS parameters will refer to 

the 5G standards set by ITU-T, namely ITU-T Rec Y.3106. 

 

3. Research Method 

The method used in this research is an experimental method. Previously no one had 

modified the Dijkstra algorithm load calculations with a weighting combination of several 

network parameters. 

 

3.1 System Design  

The network topology used in this research is the simulation of SDN on 5G. The network 

will be controlled by ryu-controller software that acts as an SDN controller. Ryu-controller has 

the best SDN Controller simulator in term of latency & throughput good performance when it 

cover the number of routers or switches under 20 routers/switches (Albu-Salih 2022). While in 

this research, it used 12 routers, ryu-controller will bring best performance in testing scenario. 

As seen in the Figure 2, this network topology separates the function of SDN devices into 

three parts, namely, Radio Access Network (RAN) access router (S11, S22, S77, S88) as a 

router connected to the BTS, Gateway router (S1,S2,S3,S4) as an aggregator of various routers, 

Core router (S33,S44,S55,S66) as a router connected to the core network device. As a control 

plane, the SDN controller provides a flow table to each connected RAN router, core, and 

gateway using a Dijkstra-based routing protocol that is modified in the load calculations. In this 

research, the best route between the source (H1) and destination (H3) points will be analyzed. 

 In this research, the load parameters calculation will use a combined weight of reference 

bandwidth, bandwidth utilization, and latency. The weights are adjusted to the services required 

in the 5G network slicing priority, namely eMBB & urLLC. 

 

Fig. 2. SDN Topology For 5G Networks Simulation 

As seen in Figure 3, higher weights are given to prioritized network slicing (An et al., 

2019). For load calculations, weighting will be carried out in 3 options. According to equation 

1, the three load components are combined into one through a weighting scheme symbolized by 

x, y, and z. 
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Fig. 3. Higher weights are given to prioritized network slicing 

From this equation, the weighting will be carried out in 3 options. Option 1,  equal weight 

means that each load has the same priority in network slicing. Option 2, In 5G eMBB network 

slicing for high throughput, bandwidth load has a higher weight than latency. Option 3, In 

urLLC 5G network slicing for low latency, the latency load has a higher weight than the 

bandwidth. 

      (
            

                
 ( )   

          

                
 ( )            ( ))

    (1) 

 
Tabel 1 - Dijkstra Algorithm Weight Calculation Options In Equation 1 

Options x y z 

1 33.334% 33.333% 33.333% 

2 35% 35% 30% 

3 30% 30% 40% 

The x, y, and z values will change according to the needs of the traffic character that will 

be processed by network slicing. For load components with reference bandwidth, the reference 

bandwidth value used is 10 Tbps. This means that the larger the bandwidth configuration, the 

smaller the costs required. 

 

3.2. Implementation 

The implementation of the modified Dijkstra algorithm load calculation on the 5G 

network is carried out entirely in the form of network virtualization by SDN. The SDN emulator 

used in this research is Mininet version 2.3.0, and the SDN controller used Ryu Controller 

version 4.34, that support OpenFlow version 1.4. For further development, it is recommended to 

use the software version that is implemented in this research, so that the program can run well. 

Meanwhile, for the hardware environment, this research uses an Intel-based computer. If you 

want to run this program or develop it, on any type of computer as long as it is based on an Intel 

CPU, there should be no problem. 

All of the modified Dijkstra algorithm load calculations were inserted into the Ryu 

controller as the main routing engine, then the best route calculation will be distributed to all 

network nodes in mininet. The smaller of load calculation result of the routing path, the more it 

will be chosen as the best routing path. Modification of the Dijkstra algorithm load calculation 

is carried out in a Python program running on the Ryu controller. In one of the functions in the 

Python program there is a function that contains how the program reads the bandwidth 

configured on each router interface, then this parameter is included in the calculation in the 

Dijkstra algorithm to find the best route. Load calculation modifications start from how to get 

data from bandwidth utilization on each interface, combined with the latency value obtained 

from the ping test sent by one router to another router. 

 

3.3 Testing Scenarios 

Testing will also be carried out with three scenarios; the first is when the network is in the 

best condition, where there are no links down. The second scenario is when the network is in a 

condition where there is one link is down. The third scenario is the worst scenario, where there 
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are three or more links that are down in the network. This entire scenario will be tested by two 

types of traffic: large and small packet size. The first stage of the test result is about how the 

selected paths differ, such as short length and number of hops, then continues with how long 

each algorithm takes (latency) to calculate. 

The process required for the first test is a ping test and traceroute from source to 

destination. The second stage of testing results is measuring several QoS parameters, such as 

throughput and packet loss, using iperf. Each testing stage will be repeated ten times so that its 

characteristics can be analyzed. 

 

3.4 Program Flow 

Figure 4 illustrates that the program started from the SDN controller by ryu-controller. 

Ryu log file for routing and best path selection was starting recorded as well for every time 

changes happened. The program then continued to mininet as a network emulator that builds 

network topology simulation and then runs the iperf to send the traffic from all hosts in the 

network, in order to utilize the network links. At the same start time, the mininet log file for a 

ping test, link state, throughput iperf, and transaction duration was started as well.  

 

Fig. 4. Flowchart Program and Test 

After the network had the traffic inside, the real test was started by running a ping test 

between H1 & H3, while the ping test was running, the dynamic routing test was run as well by 

changing the link state from 1 link, 2 links to 3 links down in the continuous time of execution. 

The program ended after three the links state was down, and all the logs have been captured and 

saved. 

 

4. Results And Discussion 

4.1 Routing Path Selection Test 

The initial test of the program is to ensure that routing program can run well by carrying 

out a ping test from one host to another host. In each test, the host used as the source host is H1, 

and the host used as the destination host is H3. There are six programs that represent six testing 

scenarios. The six programs are : 
1) Load calculation based on shortest distance 

2) Load calculation based on bandwidth utilization 

3) Load calculation based on latency 

4) Load calculation based on a combination of bandwidth capacity/reference, bandwidth 

utilization & latency (all have equal weight load) 

5) Load calculation based on a combination of bandwidth capacity/reference (30%), bandwidth 

utilization (30%) & latency (40%) 

6) Load calculation based on a combination of bandwidth capacity/reference (35%), bandwidth 

utilization (35%) & latency (30%). 

In the initial stage, a ping test is carried out on these six programs to ensure the routing 

function runs well. Each test will compare the number of hops, throughput/speed, latency, and 
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packet loss performance. Dynamic routing selection is also tested in each test by dropping the 

link status from 1 to 3 links to see whether the routing program still provides the best results.  

The test on small packages was repeated five times, and for large packages, it was 

repeated five times. The following discussion will detail the results of each scenario and the 

testing stages. The total number of tests carried out was 60, with each duration ranging from 5 

to 10 minutes. The total duration of the testing was around 600 minutes, which was executed at 

different times of testing. Before the routing test was recorded, every host in the network sent 

small and large packets to utilize the network with the traffic. This traffic occupied the network 

for around 10 minutes. The selection of hosts that will send packets to each other are hosts that 

are opposite each other, namely H1 to H3, H2 to H4, H5 to H8, and H6 to H7. After this 

selection, traffic can traverse various paths so that testing of routing selection can be more 

visible than if routing traversed adjacent hosts. 

In order to deliver a more representative result, the program used in the explanation 

below was the load calculation based on a combination of bandwidth capacity/reference (30%), 

bandwidth utilization (30%) & latency (40%). In the initial test, all links were up, and all hosts 

then sent and received packets from H1-H3, H2-H4, H5-H8, and H6-H7. After the network is 

utilized with traffic, H3 performs a ping test to H1. From the test results, the best routing chosen 

has good routing path and performance results, because the chosen route is not circuitous and is 

quite effective. 

 

Fig. 5. Routing Path When All Link Up  

 
Table 2 - Top 10 Best Path In All Link Up 

Rank Routing Path Total load value 

1 [33, 3, 4, 2, 11] 12.1 

2 [33, 4, 2, 1, 11] 12.7 

3 [33, 3, 4, 2, 1, 11] 12.7 

4 [33, 3, 55, 2, 1, 11] 13.9 

5 [33, 3, 4, 77, 1, 11] 14.0 

6 [33, 4, 3, 55, 2, 1, 11] 14.2 

7 [33, 3, 44, 4, 2, 1, 11] 14.2 

8 [33, 3, 44, 4, 2, 11] 14.2 

9 [33, 4, 3, 55, 2, 11] 14.6 

10 [33, 3, 4, 77, 1, 22, 2, 11] 15.1 

Figure 5 shows that the H3 to H1 route via S33-S3-S4-S2-S11 is the best route because, 

in terms of path costs, this route has the smallest load. The total number of routing combinations 

from H3 to H1 is 96 routes. If these 96 routes need to be displayed, then the entire network will 

be covered by the weight path number. As a general illustration, in Table 2, only the top 10 best 

routes are shown with their total path cost values when all links are in up condition. In the next 

routing test, three scenarios are in succession to test dynamic routing convergence: making one 

link down, two, and three. The test was run one by one, and every result was noted in a 

spreadsheet, so at the end, all the numbers could be summarized into charts. 



Adiyanto et al …                         Vol 5(2) 2024 : 1182-1198 

1190 

 

 

Fig. 6. Routing Path when one link down  

Figure 6 shows that when the link between S3 and S4 is down, so dynamic routing will 

work to determine the best new path with the smallest cost. The convergence of the Dijkstra 

algorithm in finding this new routing takes around 20 to 25 seconds. After completing 

convergence, it was found that the new route with the lowest cost would be via route S33-S4-

S2-S1-S11.  
Table 3 - Top 10 Best Path In One Link Down 

Rank Routing Path Total load value 

1 [33, 4, 2, 1, 11] 13.77 

2 [33, 3, 44, 4, 2, 11] 14.40 

3 [33, 3, 55, 2, 1, 11] 14.58 

4 [33, 3, 44, 4, 2, 1, 11] 15.33 

5 [33, 4, 2, 11] 15.37 

6 [33, 3, 44, 4, 77, 1, 11] 16.59 

7 [33, 3, 44, 4, 77, 1, 22, 2, 11] 17.43 

8 [33, 3, 55, 2, 11] 17.48 

9 [33, 4, 77, 1, 22, 2, 11] 17.63 

10 [33, 4, 77, 1, 11] 18.67 

In Table 3, it is shown that the routing calculation results from H3 to H1 have a different 

routing table compared to routing table 1. This can happen because when the S3-S4 link is 

down, not only the H3 to H1 routing changes, but the entire routing between hosts also changes. 

Please remember that this network is sending and receiving packets from H1-H3, H2-H4, H5-

H8, and H6-H7 all the time, so that if one of the links is down, then each routing will do the 

routing convergence to find the best path again. 

 

Fig. 7. Routing Path when two links down  

After successfully carrying out routing convergence testing when one link is down, the 

next test is carried out with two links are down. Figure 7 shows that routing convergence can 

still be carried out successfully when two links down. It can even produce the fewest hop paths, 

namely only three hops. In Table 4, it can also be seen that the best path has a load of 15.32, 

which is greater than the load of the best path in previous Tables 1 and 2. The final basic test is 
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to create three downlinks, namely links S3-S4, S2-S4, and S1-S2. By the condition of the three 

links being down, the new path recalculated by routing convergence results in slightly circular 

routing to S22.  
Table 4 - Top 10 Best Path In Two Links Down 

Rank Routing Path Total load value 

1 [33, 4, 2, 11] 15.32 

2 [33, 4, 77, 1, 22, 2, 11] 17.19 

3 [33, 3, 55, 2, 11] 18.26 

4 [33, 4, 77, 1, 11] 18.37 

5 [33, 4, 2, 3, 1, 11] 335.54 

6 [33, 3, 1, 11] 336.41 

7 [33, 3, 1, 22, 2, 11] 336.83 

8 [33, 3, 1, 88, 4, 2, 11] 336.93 

9 [33, 3, 2, 11] 337.11 

10 [33, 4, 1, 11] 337.95 

This happens because the S1-S3 link, which is shown in Figure 8, should have been 

selected but it was not selected. Most likely its condition has been maximally utilized by routing 

to and from hosts other than H1 and H3. 

 

Fig. 8. Routing Path when 3 links down 

This last scenario was considered the worst scenario regarding a limited number of best 

paths available when three links are down between H1 to H3. Overall, the testing result of these 

three scenarios produced good routing path results, as seen in Figure 8, the routing results when 

three links were down still showed that routing was quite optimal, with the total path cost on the 

best path still relatively small, as seen in table 5.  

After going through various scenarios, both simulating conditions when the network is in 

good condition, and simulating when the network is experiencing a lot of interference, this 

routing program modification can provide the best routing selection performance. Best path 

selection is still produces an efficient path, it does not go round and round to all the router 

points in the network. The results of this good network performance will of course also have a 

good impact on improving user experience. 
Table 5 - Top 10 Best Path 3 Links Down 

Rank Routing Path Total load value 

1 [33, 3, 2, 22, 1, 11] 12.03 

2 [33, 3, 2, 11] 14.02 

3 [33, 3, 55, 2, 22, 1, 11] 15.12 

4 [33, 3, 55, 2, 11] 18.98 

5 [33, 3, 1, 11] 334.47 

6 [33, 3, 66, 2, 22, 1, 11] 336.18 

7 [33, 3, 66, 2, 11] 340.05 

8 [33, 3, 44, 4, 1, 11] 657.40 

9 [33, 4, 1, 3, 2, 11] 658.31 

10 [33, 4, 1, 11] 658.88 

 

4.2 Performance Test 

After carrying out basic routing testing, the network performance of the routing algorithm 

with load modifications will be tested. Testing was carried out with two types of packets, 

namely small packets with an IPerf throughput of 1 Mbps and an ICMP packet size of 64 bytes, 
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then big packets with an IPerf throughput of 1 Gbps and an ICMP packet size of 16 kilobytes. 

Determination of ICMP throughput and packet size is carried out based on the load test or stress 

test carried out at the beginning of the test. From this load test, the lower and upper limits of 

throughput and packet size are obtained, which are then called small packets and big packets. 

These two types of traffic (small and large) describe the conditions of 5G network 

requirements in general. A throughput of 1gbps is needed for a 5G network to transmit high 

resolution video surveillance, while a throughput of 1 mbps is usually a small packet that 

requires super fast latency. With good results for performance testing on the traffic above, this 

Dijkstra routing load modification can be suitable for application on 5G networks. 

 

4.3 Latency Performance Test 

In the first test, the parameter tested was how the latency between H1-H3 was performed 

during five test repetitions. The latency measured is the average latency in one test, including 

when all links are up and when one to three are down. In the first performance test, the 

parameters tested were how the latency performed during five repetitions of the test. The 

latency measured is the average latency that occurs in one test, including when all links are up 

and when one to three links are down.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Latency (Ms) Result Test Using Small Packet Size 

Figures 9 and 10 show that the Dijkstra algorithm with the shortest distance load and 

bandwidth still delivers longer latency results compared to using other load calculations. This 

happens both when sending small packets and large packets. With these results it can be said 

that to achieve fast packet delivery with low latency, the Dijkstra algorithm cannot use load 

calculations with the shortest distance or bandwidth util. Load calculations must take into 

account latency conditions on the network when routing calculations are carried out, either 

using latency load calculations only or latency load calculations combined with bandwidth 

capacity and utilization loads. 

Test number 
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Fig. 10. Latency (ms) result test using big packet size 

Two Figures 5 and 6 show the comparison amount of latency or time required between 

source and destination. A small packet requires an average of 3 milliseconds, and a large packet 

requires up to 4000 milliseconds. This happens in all experiments from the 1st to the 5th and 

also occurs in every scenario 1 to 3 link down. Figures 9 and 10 demonstrate that the general 

latency performance test results with load modifications to the Dijkstra algorithm using a 

combination of latency, bandwidth utilization, and reference bandwidth produce better 

performance than the Dijkstra algorithm with shortest distance load or bandwidth utilization 

alone. Even so, the results of the combination of latency load, bandwidth utilization, and 

reference bandwidth still cannot outperform the use of latency-only load calculation. 

 

4.4 Hop Count Test 

The second performance test tests the number of hops required for each Dijkstra 

algorithm load comparison. Figures 11 and 12 present that the routing load calculation based on 

the shortest distance and latency has the shortest number of hops. Meanwhile, it requires at 

minimum 4 hop counts, when the load routing path calculation is based on the load 

combination. 

 

Fig. 11. Hop count result test using a small packet size 

No number of hops exceeds 6 hops for both small packets and big packets. This proves 

that the entire routing path selection algorithm with various load modifications can successfully 

deliver packets smoothly, without having to circle the network which can increase delivery 

time. or latency also becomes long. 

Test number 

Test number 
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Fig. 12. Hop count result test using a big packet size 

The general hop count performance test results in Figures 11 and 12 show that 

modification of the load on the Dijkstra algorithm using a combination of latency, bandwidth 

utilization, and bandwidth reference does not produce better performance than the Dijkstra 

algorithm with the shortest distance or latency load. This combination of latency load, 

bandwidth utilization, and reference bandwidth still cannot outperform bandwidth utilization 

load because the performance test results tend to be the same. 

 

4.5. Packet Loss Performance Test 

The final performance test is packet loss testing. In a real network, measuring packet loss 

is a very important parameter to be monitored and optimized regularly. Packet loss will greatly 

affect users’ experience who expect the best network quality. In this research, the author uses a 

network emulator, where computational factors can also influence the packet loss performance 

results in this network simulation. 

 

Fig. 13. Packet loss result test using a small packet size 

Figures 13 and 14 show a fairly high increase in packet loss in the 3rd test, which reached 

3.5% packet loss. This anomaly value is not caused by a bad network, but it is related to 

computational factors inside the emulator. There are some conditions when the ICMP test or 

ping test runs, the routing calculation has not been completed, so there are some packets that 

cannot get the best path information. These conditions cause the packet to drop and be lost. 

In general, the packet loss performance results in Figure 6 do not reflect any significant 

differences from the modification of the Dijkstra algorithm load with a combination of latency, 

bandwidth utilization, and reference bandwidth. Apart from the computational factors in the 

network emulator, without any load modifications, the Dijkstra algorithm in this network 

emulator has shown good performance, namely 0% packet loss for various test scenarios. 

Test 

Test number 
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Fig. 14. Packet loss result test using a big packet size 

However, this variation in load calculation parameters is what differentiates it from other 

research, because 5G network requirements are not only for ultra-high speed, but there are also 

ultra-low latency requirements, which can then only be met by using customize routing 

calculations that can be adjusted based on the use case. 

 

4.6 Result Comparison  

By the results above, there are some differences and similarities from the previous 

research. M Abdelghany et al., (2022) has slightly difference latency achievement by getting 1 

ms delay and 52 Mbps throughput, meanwhile our research reached 2 ms delay, but has better 

throughput delivery that reach 1 Gbps. Adedokun et al., (2017) was not yet better, by only 

achieved 4.5 ms latency and 612 Mbps. Karami & Akhtarkavan (2015) has 0 ms delay when it 

only has under 30 events of routing exchange, after that it produced 90 ms delay. Jiang et al., 

(2014) has 4-5 ms latency from the result. Fan & Shi (2010) achieved 90-300ms when defining 

new route from soruce to destination in road nework. Sander & Schultes (2007) improve 

dijkstra for fast route planning in map application, the query time need around 10-100ms delay. 

 

5. Conclusion 

This research can prove that load modification in the Dijkstra algorithm with a 

combination of latency load, bandwidth utilization and bandwidth capacity can work well. 

Increased network performance can be demonstrated by measuring packet loss of less than 1%, 

as well as latency performance of less than 5 milliseconds. This latency and packet loss 

performance gives the same performance results, there are even several tests that have better 

results compared to using the Dijkstra algorithm load without combination. With these results, 

the Dijkstra algorithm with load modification is expected to be able to answer packet routing 

needs on 5G networks, namely high throughput and low latency. 

To get the optimal value, the load combination weights need to be tested with various 

scenarios. If in this study the experiment only used a weight figure of around 30% to 40%, then 

in future research it can be tested using a combination of numbers with a further polarization, 

for example the latency load weighs 70%, the bandwidth load weighs 30%, or vice versa. This 

is done so that the characteristics of the program can be more visible, so that it is hoped that the 

research results can be used as a comprehensive reference for its application in 5G network 

routing in the telecommunications industry. 
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