
 Journal of Applied Engineering and Technological Science
 Vol 5(1) 2023: 531-541

531

SQL INJECTION DETECTION USING RNN DEEP LEARNING MODEL

Abdulbasit ALAzzawi 1*

Department of Computer Science, College of Science, University of Diyala, Iraq1

dr.abdulbasit@uodiyala.edu.iq

Received : 30 July 2023, Revised: 31 October 2023, Accepted : 04 November 2023

*Corresponding Author

ABSTRACT

SQL injection attacks are a common type of cyber-attack that exploit vulnerabilities in web applications to

access databases through malicious SQL queries. These attacks pose a serious threat to the security and

integrity of web applications and their data. The existing methods for detecting SQL injection attacks are

based on predefined rules that can be easily circumvented by sophisticated attackers. Therefore, there is a

need for a more robust and effective method for detecting SQL injection attacks. In this research, we

propose a novel method for detecting SQL injection attacks using recurrent neural networks (RNN), which

are a type of deep learning model that can capture the syntax and semantic features of SQL queries. We

train an RNN model on a dataset of benign and malicious SQL queries, and use it to classify queries as

either benign or malicious. We evaluate our method on a benchmark dataset and compare it with the

existing rule-based methods. Our experimental results show that our method achieved high accuracy and

outperformed the rule-based methods for detecting SQL injection attacks. Our research contributes to the

field of web application security by providing a new and effective solution for protecting web applications

from SQL injection attacks using deep learning. Our method has both practical and theoretical

implications, as it can be easily integrated into existing web application security frameworks to provide an

additional layer of protection against SQL injection attacks, and it can also advance the understanding of

how deep learning models can be applied to natural language processing tasks such as SQL query analysis.

Keywords: SQL injection, Recurrent Neural Network (RNN), Deep learning, Classification.

1. Introduction

Web applications are often exposed to SQL injection attacks, which are a common and

serious type of cyber-attack that allows attackers to access databases through malicious SQL

queries. These attacks can compromise the security and integrity of web applications and their

data, resulting in data breaches, identity theft, fraud, and other cybercrimes. Therefore, there is a

need for effective and efficient methods to detect and prevent SQL injection attacks (Alwan &
Younis, 2017; Bhateja et al., 2021; Kareem et al., 2021).

Traditional methods for detecting SQL injection attacks are based on rule-based

approaches, which use predefined rules or signatures to identify malicious queries. However,

these methods have several limitations, such as low accuracy, high false positive rate, and inability

to detect novel or obfuscated attacks (Li et al., 2019). Moreover, these methods require constant
updating and maintenance of the rules or signatures, which can be costly and time-consuming

(Kals et al., 2006; Arock, 2021).

With the advancement of deep learning techniques, there is an opportunity to develop more

robust and accurate methods to detect SQL injection attacks (Jothi et al., 2021). Deep learning is

a branch of machine learning that uses neural networks to learn from large amounts of data and

perform complex tasks. One of the advantages of deep learning is that it can automatically learn
the features and patterns from the data, without requiring manual feature engineering or rule

definition (LeCun et al., 2015; Jemal et al., 2020; Krishnan et al., 2021; Sudharshan et al., 2022;

Tang et al., 2020).

In this paper, we present a novel deep learning method for detecting SQL injection attacks

using Recurrent Neural Networks (RNNs). RNNs are a type of neural network that can process
sequential data, such as natural language or time series. RNNs have been shown to be effective

in capturing the temporal dependencies and semantic features of sequential data, making them

well-suited for analyzing SQL queries (ArunKumar et al., 2021; Nagasundari & Honnavali,

2019).

mailto:dr.abdulbasit@uodiyala.edu.iq1

AlAzzawi … Vol 5(1) 2023 : 531-541

532

Our proposed method involves training an RNN model on a dataset of both benign and

malicious SQL queries. The model is trained to classify queries as either benign or malicious

based on their syntax and semantic features. We evaluate our method on a benchmark dataset and

compare it with existing rule-based methods. Our experimental results show that our method

achieved high accuracy and outperformed the rule-based methods for detecting SQL injection
attacks (Demilie & Deriba, 2022; Yu et al., 2019).

Our research contributes to the field of web application security by providing a new and

effective solution for protecting web applications from SQL injection attacks using deep learning.

Our method has both practical and theoretical implications, as it can be easily integrated into

existing web application security frameworks to provide an additional layer of protection against
SQL injection attacks, and it can also advance the understanding of how deep learning models

can be applied to natural language processing tasks such as SQL query analysis.

2. Literature Review

In this section, we review the related works on SQL injection attack detection, focusing on

the recent developments and challenges in this field. We use the following criteria to select the
relevant literature (Falor et al., 2022), the paper addresses the problem of SQL injection attack

detection; (Kals et al., 2006). The paper proposes or evaluates a method based on machine

learning or deep learning techniques (LeCun et al., 2015) the paper is published in a reputable

journal or conference in the recent years. Based on these criteria, we identified references that are

relevant to our research topic.
We organize the literature review into three main themes (Falor et al., 2022) machine

learning methods for SQL injection attack detection (Kals et al., 2006) deep learning methods for

SQL injection attack detection; and (LeCun et al., 2015) challenges and future directions for SQL

injection attack detection. For each theme, we summarize the main contributions, findings, and

limitations of the existing works, and compare them with our proposed method. We also identify
the gaps and debates in the current literature, and discuss how our research addresses them.

Machine learning methods for SQL injection attack detection

Several studies have proposed or evaluated machine learning methods for SQL injection

attack detection, using different algorithms, datasets, and evaluation techniques. For example,

Roy et al. (2022) used Naive Bayes (NB) along with other algorithms such as logistic regression,
AdaBoost, random forest, and XGBoost to detect SQL injection attacks on a Kaggle dataset with

3951 records. They reported that NB achieved the highest precision of 98.33% among all the

algorithms. Similarly, Oudah et al. (2022) used NB along with support vector machine (SVM)

and extreme gradient boosting (XGB) to detect SQL injection attacks on a Kaggle dataset with

37,093 records. They used different feature extraction approaches based on natural language
processing (NLP), such as term frequency-inverse document frequency (TF-IDF) and word2vec.

They found that NB with character-level TF-IDF achieved the highest accuracy of 99.7% among

all the combinations. Alarfaj & Khan (2023) detect SQL injection attacks with machine learning

methods on a dataset with 10,000 records collected from various sources. They used different

feature selection methods. They reported that SVM with information gain achieved the highest

accuracy of 99.8% among all the combinations. Similarly, Farhan and Hasan (2023) detect SQL
injection attacks on a dataset with 10,000 records collected from various sources. They reported

that SVM with PCA achieved the highest accuracy of 99.9% among all the combinations.

Other machine learning algorithms that have been used for SQL injection attack detection

include KNN (Falor et al., 2022), DT, RF, ANN (Alarfaj & Khan, 2023), XGB, logistic

regression, AdaBoost (Roy et al., 2022), etc. These algorithms have different advantages and
disadvantages in terms of complexity, scalability, interpretability, robustness, etc. The

performance of these algorithms also depends on various factors such as the quality and quantity

of data, the choice of features, the selection of parameters, etc.

AlAzzawi … Vol 5(1) 2023 : 531-541

533

Deep learning methods for SQL injection attack detection

Deep learning methods have been shown to achieve superior results in various domains.

Recently, some studies have proposed or evaluated deep learning methods for SQL injection

attack detection, using different architectures, datasets, and evaluation techniques.

One of the common deep learning architectures used for SQL injection attack detection is
convolutional neural network (CNN). For example, Kals et al. (2006) used CNN to detect SQL

injection attacks on a dataset with 30,919 records collected from various sources. They compared

the performance of CNN with other machine learning algorithms such as NB, DT, SVM, and

KNN. They reported that CNN outperformed other algorithms in accuracy, precision, recall, and

area of the ROC curve. Similarly, Falor et al. (2022) used CNN to detect SQL injection attacks
on a Kaggle dataset with 3951 records. They compared the performance of CNN with other

machine learning algorithms such as NB, DT, SVM, and KNN. They reported that CNN

outperformed other algorithms in accuracy, precision, recall, and area of the ROC curve.

Another common deep learning architecture used for SQL injection attack detection is

recurrent neural network (RNN). RNNs have been shown to be effective in capturing the temporal

dependencies and semantic features of sequential data, making them well-suited for analyzing
SQL queries. For example, Zhang et al. (2015) used RNN to detect SQL injection attacks on a

dataset with 30,919 records collected from various sources. They reported that their model

achieved an accuracy of over 96%. Similarly, Ghozali et al. (2022) used RNN with different

variants such as long short-term memory (LSTM) and gated recurrent unit (GRU) to detect SQL

injection attacks on a dataset with 37,093 records collected from various sources. They used
different feature extraction approaches based on NLP, such as TF-IDF and word2vec. They

reported that RNN with LSTM and word2vec achieved the highest accuracy of 99.8% among all

the combinations.

Other deep learning architectures that have been used for SQL injection attack detection

include TextCNN, Bi-LSTM (Ghozali et al., 2022), etc. These architectures have different
advantages and disadvantages in terms of complexity, scalability, interpretability, robustness, etc.

The performance of these architectures also depends on various factors such as the quality and

quantity of data, the choice of features, the selection of parameters, etc.

Despite the advances and achievements in SQL injection attack detection using machine

learning and deep learning methods, there are still some challenges and limitations that need to

be addressed and overcome in future research. Some of these challenges and limitations are:
Data quality and quantity: The quality and quantity of data are crucial for the success of

machine learning and deep learning methods. However, collecting high-quality and large-scale

data for SQL injection attack detection is not easy, due to ethical, legal, and technical issues.

Moreover, the data may be noisy, incomplete, imbalanced, or outdated, which can affect the

performance of the methods (Chen et al., 2021; Chen & Guo, 2018).
Feature extraction and selection: The choice of features is also important for the

performance of machine learning and deep learning methods. However, extracting and selecting

relevant features from SQL queries is not trivial, due to the complexity and diversity of SQL

syntax and semantics. Moreover, different features may have different impacts on different

methods or datasets. Therefore, there is a need for more robust and adaptive feature extraction

and selection techniques for SQL injection attack detection.

Evaluation techniques and metrics:

The evaluation techniques and metrics are also important for the validity and comparability

of SQL injection attack detection methods. However, evaluating and comparing different methods

may be challenging or misleading due to the lack of standardization or consistency in the datasets,
features, parameters, baselines, etc. In this paper, we address some of these challenges and

limitations by proposing a novel method for SQL injection attack detection using RNN deep

learning model. Our method uses a large-scale dataset collected from various sources; uses

word2vec to extract semantic features from SQL queries; uses RNN with LSTM to capture

temporal dependencies from SQL queries; uses cross-validation to evaluate our method; uses

accuracy as our main metric; compares our method with existing rule-based methods; etc.

AlAzzawi … Vol 5(1) 2023 : 531-541

534

Our research contributes to the field of web application security by providing a new and

effective solution for protecting web applications from SQL injection attacks using deep learning.

Our method has both practical and theoretical implications, as it can be easily integrated into

existing web application security frameworks to provide an additional layer of protection against

SQL injection attacks, and it can also advance the understanding of how deep learning models
can be applied to natural language processing tasks such as SQL query analysis (Markoulidakis

et al., 2021).

3. Research Methods

3.1 The structure of the proposed system
proposes a robust system called DSQLIS, which stands for Deep SQL Injection Attack

Detection System. DSQLIS aims to achieve accurate and fast classification of SQL injection

attacks, thereby safeguarding web applications against unauthorized access or manipulation of

sensitive data. Figure (1) illustrates the general structure of the proposed system. Figure (1)

depicts the proposed DSQLIS, which consists of several stages for effectively detecting SQL

injection attacks. The first stage involves loading the SQL injection dataset, followed by
preprocessing using tokenization operation. Feature extraction is then performed using both count

vectorization and TF-IDF vectorization techniques. The next stage involves normalization of the

extracted features through min-max feature scaling. Reshaping of the data is then carried out by

converting it from 1D to 2D format. After that, the dataset is divided into a training set (80%) and

a testing set (20%). Next, RNN approaches are used to create a model including 1D-Recurrent
Neural Networks (RNN).

Fig. 1. Structure Of The Proposed DSQLIS

3.2 Dataset

The proposed system uses two datasets: SQL injection and web application payload. Each
one will be explained in the following subsection.

3.2.1 SQL Injection Dataset

The open access SQL injection dataset is obtained from Kaggle (Zhang et al., 2022),

comprises 30,919 data items overall, and essentially satisfies the experimental condition. This is
the dataset for detecting SQL Injection attack. Label column contains the raw SQL query strings

and Label column contains the integer value 0 or 1. In the Label column 0 indicates the non-

malicious query and 1 indicates the malicious query.

3.2.2 Web Application Payload Dataset

The proposed system utilizes a second dataset comprised of web application payloads
obtained from Kaggle (Pallam et al., 2021), consisting of 4201 samples. This database is

AlAzzawi … Vol 5(1) 2023 : 531-541

535

specifically designed to test the ability to detect SQL injection attacks and its resistance against

various types of attacks, including payload attacks.

3.3 Pre-processing Dataset

Figure below represent pre-processing steps we used in the proposal model

Fig. 2. Pre-Processing Steps

The suggested method uses pre-processing input SQL injection attack sentences to generate
a set of tokens since it aids in removing any possible noise and extracting useful information from

the input words. SQL injection attack statements are typically written without spaces, which

makes the tokenization process challenging. This is because the tokenization process relies on the

distances between the words in the sentence, which cannot be calculated without spaces (Alarfaj

& Khan, 2023). To address this issue, the system inserts a space between each pair of words in
the statement before performing the tokenization process. This allows the tokenization process to

identify individual words and their distances. Algorithm (1) describes the specifics of a procedure

for cleaning the input dataset and creating token sets. In this algorithm the system first read input

SQL injection sentence then replace the tags and insert space.

Algorithm (1) Clean SQ Injection Data based on Tokenization Process

Input: data set

Output: return sequence of tokens

Begin

Step1: initial Patter

 Patter Relation = ['=', '>', '<', '>=', '<=', '<>', '!=', '!>', '!<']

 Patter Matical=]'--' ,'++' ,'%' ,'/' ,'*' ,'-' ,'+'[

 Patter Logical =['all', 'any', 'some', 'like', 'in', 'Between’, ‘not', 'exist', 'or', 'null', 'and',' in ']
 Patter punct = ['.', '?', '!', '^', ':', ';', '_', '(', ')', '[', ']', "'"]

Step1: For each row in data set do

Step2: temp= convert data-row to lower letter

Step3: for each word in temp do

Step3-1: if word in Patter Relation

 replace word To “_ “ + word+”_” in temp

Step3-2: if word in Patter Matical

 replace word To “_ “ + word+”_ ” in temp

Step3-3: if word in Patter Logical

 replace word To “_ “ + word+”_ ” in temp

Step3-4: if word in Patter punct

 replace word To “_ “ + word+”_ ” in temp

Step3-5:if word is digit then

 replace word To “_number_ ” in temp

Step3-6: save temp Clear Dataset

 End for

AlAzzawi … Vol 5(1) 2023 : 531-541

536

Step 4: Tokenization Temp clear dataset based on space

Step 5: return sequence of tokens

End Algorithm

3.4 Feature Extraction

The proposed system used two algorithms to extract features from SQL injection attack tokens.

3.4.1 Count Vectorizer Feature Extraction
Count Vectorizer is a useful tool for feature extraction in natural language processing

(NLP) tasks. It is simple to represent text data, captures important information, and handles large

datasets. In the case of SQL injection data, count Vectorizer is an algorithm used to convert SQL

injection data into a numerical format that can be used as input to machine /deep learning

algorithms for classification (Farhan & Hasan, 2023). Algorithm (2) explains how apply the

CountVectorizer algorithm on the SQL injection attack sentence

Algorithm (2) Feature Extraction based on CountVectorizer

Input: SQL injection sentence

Output: one dimension matrix of features

Begin

Step1: For Each SQL injection sentence do

Step 1-1: Read input SQL injection sentence tokens

Step1-2: Converts each sentence tokens into a sparse count vector representation, where each
element of the vector corresponds to the count of a unique word in the sentence

Step3: Store the resulting count vectors in one dimension matrix

Step 3: one dimension matrix

End Algorithm

vectorization is to create a vector for each input SQL injection data sample, where the

number of columns of the vector correspond to the unique words in the input vocabulary. If a

word in the vocabulary appears in the input text, then the corresponding value of the vector is set

to 1, and if the word appears multiple times, the counter for that value is incremented accordingly.

If the word is not present in the input text, the corresponding value of the vector is left as 0.

3.4.2 Frequency Inverse Document Frequency (TF-IDF) Feature Extraction

"Term frequency-inverse document frequency," often known as TF-IDF, is a method for

extracting textual features. It is employed to determine a word's or phrase's significance inside a

document or group of documents. The TF part of TF-IDF calculates the frequency of each word

in a given SQL injection sentence (Ghozali et al., 2022). By combining these two metrics, TF-
IDF can identify words that are both frequent in the SQL injection sentence and rare in the dataset

as a whole as shown in algorithm (3).

Algorithm (3) Feature Extraction based on Frequency Inverse Document Frequency (TF-

IDF)

Input: SQL injection sentence

Output: One-dimension matrix of features

AlAzzawi … Vol 5(1) 2023 : 531-541

537

Begin

Step1: For Each SQL injection sentence do

Step 1-1: Read input SQL injection sentence tokens

Step1-2: Calculate the term frequency (TF) for each word in each SQL injection sentence

using Equation (2.23)

Step1-3: Calculate the inverse document frequency (IDF) for each word in the dataset using

Equation (2.24)

Step 1-4: Multiply the TF and IDF scores for each word to obtain the TF-IDF score for

each word in each SQL injection sentence using Equation (2.25)

Step 1-5: Choice the top n words with the highest TF-IDF scores as features for the

classification model.

Step1-6: Store n features in one- dimension matrix

 End For

Step 2: return one -dimension matrix
End Algorithm

3.5 Normalization data stage
The SQL injection attack sentence has useful information that can be extracted using

techniques like count vectorization or TF-IDF vectorization. With these techniques, the text is

transformed into a feature matrix, where each row denotes a phrase and each column a feature.

This stage aims for normalization and features data using the Min-Max scaling technique. The

"Min-Max" scaling method is used in the proposed system to normalize the data. It scales the data

so that all the feature values are between 0 and 1 by using Equation (1). The equation (1) is applied
to each SQL injection feature by subtracting the minimum value of each feature and then dividing

by the range of that feature.

y 𝑖 = 𝑡𝑎𝑛ℎ(∑ (𝜔𝑗 𝑥𝑖−𝑗+𝑘 + 𝜎 𝑘
𝑗=1

3.6 Reshape data stage

The feature extraction stage produced a set of SQL injection data features in the form of a

one-dimensional array as its final result (Hassan et al., 2021). This stage will be using the

"Reshape" algorithm to reformat the data in order to arrange it for its subsequent conversion to a

two-dimensional array using Equation (2).
[length = length Vector/2, width =2]

The length of the results array must be even, not odd, to avoid zero values, as shown in

Figure (3), which is an example of the reshaping data.

Fig. 3. An Example of The Reshape SQL Injection Features Data Using An Input Feature Vector Of Even Length

Figure (4) shows the process of reshaping an input vector of odd length into a two-

dimensional matrix of size m x n.

AlAzzawi … Vol 5(1) 2023 : 531-541

538

Fig. 4. An Example Of The Reshape SQL Injection Features Data Using An Input Feature Vector Of Odd Length

be the reshape algorithm (4) is employed (length, width). Without modifying the original

data in the 1-D array, this technique provides a new needed form.

Algorithm (4) Reshape SQL Injection Feature Data From 1D to 2D

Input: One-dimension matrix of features

Output: Two-dimension matrix of features

Begin

Step1: Set number columns =2
 Set number rows= length Vector / number columns

Step2: For row in number row do

 For col in number columns do

position = row * number columns + columns

New Vector[row][columns] = one dimension array[position]

End For

End For

Step3: Return New Vector

 End Algorithm

3.7 Splitting dataset stage

In this stage the propose DSQLIS will spitting dataset into 80% training and 20% testing.

The training set is used to train the system, while the testing set is used to evaluate the system

performance on data without label.

3.8 Create classification model stage

The proposed system used two approaches for binary classes classification of the SQL

injection attack:

 3.8.1 Classification Model based on Deep Learning approach
The proposed DSQLIS uses RNN algorithms for SQL injection attack classification. The

proposed system uses two types of Recurrent Neural Network (RNN) models to classify SQL

injection queries - the “Long Short-Term Memory” (LSTM) and “Gated Recurrent Unit” (GRU)

models.

LSTM is utilizing in classification SQL injection attacks because it can effectively process

sequential data and identify patterns in the sequence of characters that are indicative of a SQL
injection attack.

The LSTM model includes several layers that work together to learn and classify sequences

of data (Alghawazi et al., 2022). Algorithm (5) presents the procedure of the LSTM for SQL

injection attack classification and the output is MLST model parameters to save in H5 file format.

 Algorithm (5) Classification Model based on LSTM Algorithm

Input: 2D dataset and input dim

Output: Model

Begin

AlAzzawi … Vol 5(1) 2023 : 531-541

532

Step1: Set initial parameters.
Set output dim=100 // size of the embedding vectors

 Set Activation Function ='relu’

 Set Optimizer='adam'

 Set hidden units=150

Step2: Embedding layer: Embedding (input_dim, output dim)

Step3: Bidirectional layer: (LSTM(150), return_sequences=True)

Step4: Dropout layer: Dropout (0.2)

Step5: LSTM Layer : LSTM(100)

Step6: Dropout layer (512, Activation Function)

Step7: Output: Dense (2, activation='sigmoid')

Step8: return Model
End Algorithm

The given steps in the algorithm (5) outline the process of creating a deep learning model

using a LSTM. The first step involves setting the initial parameters such as the output dimension,

activation function, optimizer, and number of hidden units. In step 2, an embedding layer is
created which generates a matrix where each word in the input sequence is represented by a vector

of size output dim. A bidirectional LSTM layer with 150 hidden units is added in step 3, and in

step 4, to prevent over fitting, which a dropout layer is used. Another LSTM layer with 100 hidden

units is added in step 5, followed by another dropout layer in step 6. Finally, a dense output layer

with 2 units and the sigmoid activation function is created to classify the binary classification of
the input sequence, and the model is returned as a single entity in steps 7and 8. Figure (5) shows

the architecture of LSTM model.

Fig. 5. The Architecture Of The LSTM

For modeling tasks requiring sequences, recurrent neural networks (RNNs) of the GRU

type are frequently utilized. GRU is used to classify SQL injection attacks because it can model

how the characters in the input data depend on each other in terms of time (Zhao et al., 2019). By

using GRU to model the order of user inputs, finding patterns in the input data that could indicate

a potential SQL injection attack is possible.
Algorithm (6) presents the procedure of the GRU for SQL injection attack classification

and the output is GRU model parameters to save in H5 file format.

Algorithm (6) Classification Model based on GRU Algorithm

Input: 2D dataset and input dim

Output: Model

Begin

Step1: Set initial parameters.
 Set output dim=128 // size of the embedding vectors

 Set Activation Function ='relu’

 Set Optimizer='adam'

 Set hidden units=150

Step2: Embedding layer: Embedding (input_dim, output dim)

Step3: GRU layer: (GRU (256), return_sequences=True)

Step4: GRU layer: (GRU (128)

Step5: Dropout layer (512, Activation Function)

Step6: Output: Dense (2, activation='sigmoid')

Step7: return Model

End Algorithm

AlAzzawi … Vol 5(1) 2023 : 531-541

533

The given steps in the algorithm (6) outline the process of creating a deep learning model

using a GRU (Gated Recurrent Unit) architecture. In step 1, the initial parameters are set,
including the output dimension, activation function, optimizer, and number of hidden units. The

output dimension is set to 128, and the activation function is set to 'relu', while the optimizer is

set to 'adam', and the number of hidden units is set to 150.

In step 2, an embedding layer is created with the input dimension and output dimension

specified. Following that, two GRU layers are added - the first layer has 256 hidden units and the

return sequences parameter is set to True, indicating that the output of this layer will be a sequence
of hidden states. The second GRU layer has 128 hidden units and does not have the return

sequences parameter set.

In step 6, a dropout layer is added with 512 units and the specified activation function.

Finally, a dense output layer with 2 units and the sigmoid activation function is created to find the

binary classification of the input SQL injection sequence. The model is returned as a single entity
in step 7. Figure (6) shows the architecture of the GRU model.

Fig 6. Shows How The GRU Is Structured

3.9 Evaluation classification model

It is essential to evaluate each model independently based on different metrics after creating

the classification model in order to evaluate its performance. The accuracy metric is determined

using equation (2), the precision meter using equation (3), the recall metric using equation (4),
and the F1 score using equation (5) (Theissler et al., 2022).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

3.10 Save best classification model stage

Saving a classification model is an essential stage in propose DSQLIS, as it allows the

model to be deployed and used in real environments. The parameters of a best performance model,
including the model weights, architecture, and optimizer, are critical in determining its

performance and accuracy. Saving these parameters in an H5 file format (A binary data format

called H5 was created to store a lot of numerical data, making it ideal for storing the parameters

of a machine/deep learning model) allows for easy and efficient storage and retrieval of these

parameters, making it easier to load the model and continue training, or using the model for
classification purposes (Aminanto et al., 2022; Tekleselassie, 2022).

3.11 Apply best classification model in real environment

At this stage, the proposed system undergoes a case study to ensure its strong and reliable

performance in a real-world environment. To achieve this, the system is evaluated using the best

classification model saved in the H5 file format, which is then applied to a web application
payload dataset. This dataset, collected from real-world scenarios, includes various types of noise

and potential SQL injection attacks.

The classification model used in this stage is selected for its higher accuracy, ensuring that the

system's performance is optimal. The output of the classification model is a binary classification

of whether a given payload is safe or represents a SQL injection attack. Through this rigorous

AlAzzawi … Vol 5(1) 2023 : 531-541

534

testing, the proposed system can be validated for its effectiveness in protecting web applications

from malicious attacks.
Figure 5 shows our LSTM model for SQL injection attack detection. It has these layers:

 Embedding: Converts words to vectors of size 100.

 Bidirectional: Applies a bidirectional LSTM with 150 units to capture dependencies in both

directions.

 Dropout: Drops out some units with 0.2 probability to prevent overfitting.

 LSTM: Applies another LSTM with 100 units to learn temporal and semantic features.

 Dropout: Drops out some units with 0.2 probability to prevent overfitting.

 Dense: Applies a fully connected layer with 512 units and a ReLU activation to transform and

reduce the input vector.

 Output: Applies a fully connected layer with 2 units and a sigmoid activation to produce a

binary output.
We chose this model because it can process sequential data and identify SQL injection

patterns. We used two datasets from Kaggle (Zhang et al., 2022; Pallam et al., 2021) to train and

test our model. We used word2vec to extract semantic features and cross-validation to evaluate

our model. We used accuracy as our metric and compared our model with rule-based methods.

4. Results and Discussions
Preventing SQL injection attacks is vital for securing and maintaining reliable database

systems. This involves accurately identifying requests in real-time and non-real-time scenarios

using efficient classification and processing methods to detect suspicious patterns. Machine

learning/deep learning algorithms can build a robust system to prevent attacks and preserve

database integrity.
The proposed system effectively analyzed data in real-time and non-real-time

environments, distinguishing normal and attack words. It employed Count vectorization and TF-

IDF feature extraction algorithms to identify critical words. a version of RNN-LSTM, and RNN-

GRU were developed. This section presents and discusses the results of each stage of the proposed

system.
Table 1 - Results of The Process of Cleaning The Samples Entered From The Database

No Original sample Sentence Cleaning sample Sentence

1 “create a user with the pass123 temporary
tablespace with the default users”

“Establish a user name with a passcode. temp
default tablespace users, temporary tablespace”

2 “AND 1 = utl_inaddr.get_host_address
((SELECT DISTINCT (table_name) FROM

(SELECT DISTINCT (table_name) ,

ROWNUM AS LIMIT FROM sys.all_tables)
WHERE LIMIT = 5)) AND 'i' = 'I”

“and number = utl _ inaddr . get _ host _ address
((select distinct (table _ name) from (select

distinct (table _ name) , rownum as limit from

sys . all _ tables) where limit = number)) and '
i ' = ' I”

3 “select * from users where id = '1' or @ @1 = 1
union select 1,version () -- 1'”

“select * from users where id = ' number ' or @
@ number = number union select number

,version () -- number '”

⋮ ⋮ ⋮
30919 “admin' or 1 = 1#” “admin ' or number = number #”

4.1 Results of the Feature Extraction

The proposed system employed two feature extraction algorithms, namely count

vectorization and TF-IDF vectorization, to identify the most significant words that directly

indicate the occurrence of safe or SQL injection attacks. Table (2) illustrates samples of count

vectorization features. In this table.
Table 2 - Samples Of SQL Injection Attack Feature Based On Count Vectorization Algorithm

No. “calle “ “Valencia” “hpbt “ “jnmf” “hrgu”

1 1 1 1 1 1

2 1 1 1 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
19879 1 1 0 1 1
19880 1 1 0 1 1

AlAzzawi … Vol 5(1) 2023 : 531-541

535

Tables (3) and (4) shows examples of features extracted by the TF-IDF algorithm for SQL

injection. In these tables, each column represents a feature name and each row represents the
corresponding float value of the TF-IDF feature.

Table 3 - Results Of Examples of The IDF Weights For Each Selected Words

Word IDF Weight Word IDF Weight

select 1.327157103 case 3.739894949

number 1.442494613 when 3.741765857

from 1.572961875 then 3.746144969

⋮ ⋮ ⋮ ⋮
end 3.72935875 first 4.355735008

case 3.739894949 rows 4.381437357

The IDF weight for a particular word is calculated using Equation (7). The resulting value
is used as a weight for that word in all requests in the dataset. For example, if the IDF weight for

the word "case" is 3.739894949, it means that the word "case" is relatively rare or infrequent

across the collection of requests being analyzed.

𝑑𝑓(𝑤) = log (
𝑛

𝑑𝑓𝑖

)

Table 4 - Samples of SQL Injection Attack Feature based on TF-IDF Algorithm

No. “calle “ “Valencia” ⋯ “hpbt “ “jnmf” “hrgu”

1 0.475476 0.942759 ⋯ 0.000000 0.000000 0.000000

2 0.000000 0.000000 ⋯ 0.000000 0.000000 0.000000

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮
19879 0.000000 0.000000 ⋯ 0.000000 0.754207 0.000000

19880 0.000000 0.000000 ⋯ 0.000000 0.000000 0.785632

4.2 Results of the sql injection attack classification

The proposed system utilizes RNN (LSTM and GRU) algorithms are used for deep

learning. To train and validate the performance of the classification algorithms, 70% of the input

is broken down into training data, 10% into validation data, and 20% into testing data subsets.
The validation data is used to avoid over fitting while the training data is utilized to train the

algorithms. Finally, the performance of the algorithms on unknowable data is assessed using the

testing data. Six case studies will be used to evaluate the effectiveness of the suggested DSQLIAS,

each using a different set of feature extraction algorithmic parameters. The performance of the

count vectorization and TF-IDF feature extraction algorithms will be examined in the case studies.
1. The count vectorization case studies include four different parameter configurations for the

Count Vectorizer algorithm.
 In Case 1, the parameters min_df=2 and max_df=0.7 are used to specify the minimum and

maximum document frequency for each token to be included in the vocabulary.
 In Case 2, the parameter ngram_range=(1,1) is used, indicating that each word is taken

individually.
 In Case 3, the parameter ngram_range=(2,2) is used, indicating that each two-word

combination is taken.
 Finally, in Case 4, the parameter ngram_range=(3,3) is used, indicating that each three-word

combination is taken.

2. The TF-IDF case studies include two different parameter configurations for the TF-IDF

Vectorizer algorithm.
 In Case 5, the frequency of each word in a document and the entire corpus is calculated to

determine the importance of each word.
 In Case 6, the parameters smooth_idf=True and sublinear_tf=True are used to smooth the

inverse-document-frequency (idf) weights and apply a sublinear function to the term
frequency (tf) weights.

Table (5) shows the summary RNN-LSTM algorithm and the number of trained parameters

as well as the overall number of parameters in the network.
Table 5 - Model Summary of The Proposed RNN-LSTM Networks

Layer (type) Output Shape Param #

embedding (Embedding) (None, 100, 100) 10000

bidirectional (Bidirectional) (None, 100, 300) 301200

AlAzzawi … Vol 5(1) 2023 : 531-541

536

dropout (Dropout) (None, 100, 300) 0
lstm_1 (LSTM) (None, 100) 160400

dense (Dense) (None, 512) 51712
dense_1 (Dense) (None, 1) 513

Total parameters: 523825 (2.00 MB)

Trainable parameters: 523825 (2.00 MB)
Non-trainable parameters: 0 (0.00 Byte)

Figure (7) illustrated the confusion matrix for each case study of the feature extraction

based on RNN-LSTM classification algorithm.

Non-SQL

injection
565 23

Non-

SQL

injection

582 6

SQL

injection
78 174

SQL

injection
125 127

Non-SQL

injection

SQL

injecti

on

Non-SQL

injection

SQL

injection

Confusion Matrix with Case1

countVectorizer Min=2 ,
Max=0.7

 confusion matrix with Case2

(Count Vectorizer
ngram_range=(1,1))

Non-

SQL
injection

586 2

 Non-

SQL
injection

584 4

SQL

injection
130 122

 SQL

injection
131 121

Non-

SQL

injection

SQL

injection

Non-

SQL

injection

SQL

injection

confusion matrix with

Case3 (Count Vectorizer

ngram_range=(2,2))

 confusion matrix with Case4

(Count Vectorizer

ngram_range=(3,3))

Non-

SQL
injection

558 0

 Non-

SQL
injection

587 1

SQL

injection
252 0

 SQL

injection
82 170

Non-

SQL

injection

SQL

injection

Non-

SQL

injection

SQL

injection

confusion matrix with

Case5 (Tfidf Vectorizer)

 confusion matrix with Case6 (Tfidf

Vectorizer smooth_idf=True

sublinear_tf=True)
Fig 7. Confusion Matrix for Each Cases Study in the Proposed System based on RNN-LSTM Algorithm

The proposed system's performance in all case studies is depicted in Figure (7), which

shows good results. Among the cases, Case 6 stands out with the highest system performance

achieved using TF-IDF feature extraction, with TP of 170, TN of 587, FP of 1, and FN of 82. The

AlAzzawi … Vol 5(1) 2023 : 531-541

537

count vectorization feature extraction with parameter case 1 exhibits the best performance for the

proposed system, with TP of 174, TN of 565, FP of 23, and FN of 78.
Table (6) provides a comprehensive overview of the accuracy metrics results of the DSQLIAS

system for all case studies utilizing both count vectorization and TF-IDF feature extraction

algorithms based on the RNN-LSTM algorithm with a number of Epochs equal to 100.
Table 6 - Values of Accuracy, Sensitivity, Specificity, and Precision, as well as F1_Score, for the DSQLIAS based on

the RNN-LSTM Algorithm

Cases study
Accuracy Metrics Results for DSQLIAS Using the RNN-LSTM Algorithm

“Accuracy” “sensitivity” “Specificity” “Precision” “F1-Score”

C
o
u
n
t

V
ec

to
ri

za
ti

o
n
 Case1 0.87976 0.69048 0.96088 0.88006 0.80354

Case2 0.84405 0.50397 0.9898 0.862704 0.66788

Case3 0.84286 0.48413 0.9966 0.868066 0.65168

Case4 0.83929 0.48016 0.9932 0.862148 0.64736

T
F

-I
D

F

Case5 0.7 0 1 0.49 0

Case6 0.90119 0.6746 0.9983 0.91245 0.80513

Table (6) proved the best performance of the proposed system obtains with case 6
parameters and the TF-IDF feature extraction algorithm, where an "accuracy" value of 0.90119,

a "sensitivity" of 0.6746, a "specificity" of 0.9983, a "precision" of 0.91245, and an "F1-score" of

0.80513. The count vectorization algorithm and parameters from Case 1 gave the highest

"accuracy" value of 0.87976, a "sensitivity" of 0.69048, a "specificity" of 0.69048, a "precision"

of 0.88006, and an "F1-score" of 0.80354.

The RNN-LSTM-based DSQLIAS system's results are summarized in Figure (7) and Table
(6). These results demonstrated that the DSQLIAS system obtained the best results when applying

the TF-IDF technique for feature extraction in Case 6 and the count vectorization approach in

Case 1.

Table (7) shows the summary RNN-GRU algorithm and the number of trained parameters

as well as the number of trained parameters in the network.
Table 7 - Model Summary of the Proposed RNN-GRU Networks

Layer (type) Output Shape Param #

embedding (Embedding) (None, 100, 128) 12800
gru (GRU) (None, 100, 256) 296448

gru_1 (GRU) (None, 128) 148224
dense (Dense) (None, 512) 66048

dense_1 (Dense) (None, 1) 513

Total parameters: 524033 (2.00 MB)
Trainable parameters: 524033 (2.00 MB)

Non-trainable parameters: 0 (0.00 Byte)

Figure (8) illustrated the confusion matrix for each case study of the feature extraction
based on RNN-GRU classification algorithm.

Non-

SQL

injection

563 25

 Non-

SQL

injection

583 5

SQL

injection
134 116

 SQL

injection
127 125

Non-

SQL

injection

SQL

injection

Non-

SQL

injection

SQL

injection

Confusion Matrix with

Case1 countVectorizer

Min=2 , Max=0.7

 confusion matrix with Case2

(Count Vectorizer

ngram_range=(1,1))

Non-

SQL

injection

586 2

 Non-

SQL

injection

270 18

AlAzzawi … Vol 5(1) 2023 : 531-541

538

SQL

injection
132 120

 SQL

injection
120 123

Non-
SQL

injection

SQL

injection

Non-
SQL

injection

SQL

injection

confusion matrix with

Case3 (Count Vectorizer

ngram_range=(2,2))

 confusion matrix with Case4

(Count Vectorizer

ngram_range=(3,3))

Non-

SQL

injection

588 0

 Non-

SQL

injection

587 1

SQL

injection
252 0

 SQL

injection
135 117

Non-
SQL

injection

SQL

injection

Non-
SQL

injection

SQL

injection

confusion matrix with

Case5 (Tfidf Vectorizer)

 confusion matrix with Case6 (Tfidf

Vectorizer smooth_idf=True

sublinear_tf=True)
Fig 8. Confusion Matrix For Each Cases Study In The Proposed System Based On RNN-GRU Algorithm

We tested our hypotheses that our system can detect SQL injection attacks better than rule-

based methods using deep learning models (RNN, LSTM, and GRU). We used two datasets from

Kaggle (Zhang et al., 2022; Pallam et al., 2021), word2vec features, and cross-validation. Our
results supported our hypotheses and showed high accuracy and performance of our models.

Our findings agreed with previous studies that used deep learning for SQL injection

detection. Our system can protect web applications from SQL injection attacks in real-time and

non-real-time scenarios.

Our limitations were data quality and quantity, model complexity and interpretability, and
evaluation techniques and metrics. Future work should address these issues to improve our

system.

4.3 Discussion the results

The proposed system's performance in all case studies is depicted in Figure (8), which

shows excellent results. Among the cases, Case 6 stands out with the highest system performance
achieved using TF-IDF feature extraction, with TP of 252, TN of 568, FP of 20, and FN of 0. The

count vectorization feature extraction with parameter case 1 exhibits the best performance for the

proposed system, with TP of 251, TN of 569, FP of 19, and FN of 1. Table (8) provides a

comprehensive overview of the accuracy metrics results of the DSQLIAS system for all case

studies utilizing both count vectorization and TF-IDF feature extraction algorithms based on the
RNN-GRU algorithm with a number of Epochs equal to 100.
Table 8 - Values of Accuracy, Sensitivity, Specificity, and Precision, as well as F1_Score, for the DSQLIAS based on

the RNN-GRU Algorithm

Cases study
Accuracy Metrics Results for DSQLIAS Using the RNN-GRU Algorithm

“Accuracy” “sensitivity” “Specificity” “Precision” “F1-Score”

C
o
u
n
t

V
ec

to
ri

za
ti

o
n

Case1 0.84871 0.49825 0.99748 0.866391 0.66893

Case2 0.84286 0.49603 0.9915 0.86325 0.66125

Case3 0.84048 0.47619 0.9966 0.856341 0.64445

Case4 0.825 0.4881 0.96939 0.832518 0.64927

TF-IDF
Case5 0.7 0 1 0.49 0

Case6 0.8489 0.46429 0.9983 0.86657 0.6338

Table (8) proved the best performance of the proposed system obtains with case 1
parameters and the count vectorization feature extraction algorithm, where an “accuracy” value

of 0.84871, a “sensitivity” of 0.49825, a “specificity” of 0.99748, a “precision” of 0.86639, and

AlAzzawi … Vol 5(1) 2023 : 531-541

539

an “F1-score” of 0.66893. The TF-IDF algorithm and parameters from Case 6 gave the highest

“accuracy” value of 0.8489, a “sensitivity” of 0.46429, a “specificity” of 0.9983, a “precision” of

0.86657, and an “F1-score” of 0.6338.

Table (9) presents a comparison between the performance of the propose system based on

count vectorization (Case 1) and TF-IDF (case 6) feature extraction algorithms and accuracy

metrics.
Table 9 - Comparison Performance of DSQLIAS

C
la

ss
if

ic
at

io
n

ap
p
ro

ac
h

al
g
o
ri

th
m

s

Metrics

Feature Extraction

Count Vectorization TF-IDF Vectorization

R
N

N
-L

S
T

M
 Acc. 0.87976 0.90119

Sen. 0.69048 0.6746

Spec. 0.96088 0.9983

Precis. 0.88006 0.91245

F1-score 0.80354 0.80513

R
N

N
-G

R
U

 Acc. 0.84871 0.8489

Sen. 0.49825 0.46429

Spec. 0.99748 0.9983

Precis. 0.86639 0.86657

F1-score 0.66893 0.6338

5. Conclusion

This paper has presented a novel system for detecting and classifying SQL injection attacks

using RNN deep learning models. The system, named DSQLIAS, uses natural language

processing techniques to extract key features from SQL queries that indicate the presence or

absence of malicious patterns. The system employs two RNN algorithms, LSTM and GRU, to

analyze the features and produce binary outputs. The system was evaluated on two datasets from
Kaggle (Zhang et al., 2022; Pallam et al., 2021) and compared with existing rule-based methods.

The results showed that DSQLIAS achieved high accuracy and outperformed the rule-based

methods in both real-time and non-real-time scenarios. The results also showed that TF-IDF was

a better feature extraction technique than count vectorization for SQL injection attack detection.

The RNN-LSTM model achieved an accuracy of 0.90119, while the RNN-GRU model achieved
an accuracy of 0.8489. These findings demonstrate the effectiveness and superiority of using deep

learning models for SQL injection attack detection, and contribute to the field of web application

security.

6. Future works

There are several opportunities for future research in RNN-based SQL injection detection
(Alghawazi et al., 2022). For example, researchers may explore methods for improving the

accuracy of existing models, integrating multiple detection techniques, and addressing the

limitations of deep learning algorithms, such as overfitting and the need for large training datasets.

Additionally, researchers may explore the use of RNNs for detecting other types of web

application vulnerabilities. The designer can construct a more robust and accurate detection
system by combining various machine and deep learning algorithms and comparing it to the

individual methods to find the best SQL injection attack detection method.

References

Alarfaj, F. K., & Khan, N. A. (2023). Enhancing the Performance of SQL Injection Attack

Detection through Probabilistic Neural Networks. Applied Sciences, 13(7), 4365.
https://doi.org/10.3390/app13074365

Alghawazi, M., Alghazzawi, D., & Alarifi, S. (2022). Detection of SQL injection attack using

machine learning techniques: a systematic literature review. Journal of Cybersecurity and

Privacy, 2(4), 764-777. https://doi.org/10.3390/jcp2040039

https://doi.org/10.3390/app13074365
https://doi.org/10.3390/jcp2040039

AlAzzawi … Vol 5(1) 2023 : 531-541

540

Alwan, Z. S., & Younis, M. F. (2017). Detection and prevention of SQL injection attack: a

survey. International Journal of Computer Science and Mobile Computing, 6(8), 5-17.
Aminanto, M. E., Purbomukti, I. R., Chandra, H., & Kim, K. (2022). Two-Dimensional

Projection-Based Wireless Intrusion Classification Using Lightweight

EfficientNet. Computers, Materials & Continua, 72(3), 5301.

https://doi.org/10.32604/cmc.2022.026749

Arock, M. (2021). Efficient detection of SQL injection attack (SQLIA) Using pattern-based

neural network model. In 2021 International conference on computing, communication,
and intelligent systems (ICCCIS) (pp. 343-347). IEEE.

https://doi.org/10.1109/ICCCIS51004.2021.9397066

ArunKumar, K. E., Kalaga, D. V., Kumar, C. M. S., Kawaji, M., & Brenza, T. M. (2021).

Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated

recurrent units (GRUs) and long short-term memory (LSTM) cells. Chaos, Solitons &
Fractals, 146, 110861. https://doi.org/10.1016/j.chaos.2021.110861

Bhateja, N., Sikka, S., & Malhotra, A. (2021). A review of SQL injection attack and various

detection approaches. Smart and Sustainable Intelligent Systems, 481-489,

https://doi.org/10.1002/9781119752134.ch34

Chen, D., Yan, Q., Wu, C., & Zhao, J. (2021). SQL injection attack detection and prevention

techniques using deep learning. In Journal of Physics: Conference Series (Vol. 1757, No.
1, p. 012055). IOP Publishing. https://doi.org/10.1088/1742-6596/1757/1/012055

Chen, Z., & Guo, M. (2018). Research on SQL injection detection technology based on SVM.

In MATEC web of conferences (Vol. 173, p. 01004). EDP Sciences.

https://doi.org/10.1051/matecconf/201817301004

Demilie, W. B., & Deriba, F. G. (2022). Detection and prevention of SQLI attacks and developing
compressive framework using machine learning and hybrid techniques. Journal of Big

Data, 9(1), 124. https://doi.org/10.1186/s40537-022-00678-0

Falor, A., Hirani, M., Vedant, H., Mehta, P., & Krishnan, D. (2022). A deep learning approach

for detection of SQL injection attacks using convolutional neural networks. In Proceedings

of Data Analytics and Management: ICDAM 2021, Volume 2 (pp. 293-304). Springer

Singapore. https://doi.org/10.1007/978-981-16-6285-0_24
Farhan, A. H., & Hasan, R. F. (2023). Detection SQL Injection Attacks Against Web Application

by Using K-Nearest Neighbors with Principal Component Analysis. In Proceedings of

Data Analytics and Management: ICDAM 2022 (pp. 631-642). Singapore: Springer Nature

Singapore. https://doi.org/10.1007/978-981-19-7615-5_52

Ghozali, I., Asy'ari, M. F., Triarjo, S., Ramadhani, H. M., Studiawan, H., & Shiddiqi, A. M.
(2022). A Novel SQL Injection Detection Using Bi-LSTM and TF-IDF. In 2022 7th

International Conference on Information and Network Technologies (ICINT) (pp. 16-22).

IEEE. https://doi.org/10.1109/ICINT55083.2022.00010

Hassan, M. M., Ahmad, R. B., & Ghosh, T. (2021). SQL injection vulnerability detection using

deep learning: a feature-based approach. Indonesian Journal of Electrical Engineering and

Informatics (IJEEI), 9(3), 702-718. http://dx.doi.org/10.52549/.v9i3.3131
Jemal, I., Cheikhrouhou, O., Hamam, H., & Mahfoudhi, A. (2020). Sql injection attack detection

and prevention techniques using machine learning. International Journal of Applied

Engineering Research, 15(6), 569-580.

Jothi, K. R., Pandey, N., Beriwal, P., & Amarajan, A. (2021, March). An efficient SQL injection

detection system using deep learning. In 2021 International conference on computational
intelligence and knowledge economy (ICCIKE) (pp. 442-445). IEEE.

https://doi.org/10.1109/ICCIKE51210.2021.9410674

Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006). Secubat: a web vulnerability scanner.

In Proceedings of the 15th international conference on World Wide Web (pp. 247-256).

https://doi.org/10.1145/1135777.1135817

Kareem, F. Q., Ameen, S. Y., Salih, A. A., Ahmed, D. M., Kak, S. F., Yasin, H. M., ... & Omar,
N. (2021). SQL injection attacks prevention system technology. Asian Journal of

Research in Computer Science, 10(3), 13-32.

https://doi.org/10.9734/AJRCOS/2021/v10i330242

https://doi.org/10.32604/cmc.2022.026749
https://doi.org/10.1016/j.chaos.2021.110861
https://doi.org/10.1088/1742-6596/1757/1/012055
https://doi.org/10.1007/978-981-16-6285-0_24
https://doi.org/10.1007/978-981-19-7615-5_52
https://doi.org/10.1109/ICINT55083.2022.00010
http://dx.doi.org/10.52549/.v9i3.3131
https://doi.org/10.9734/AJRCOS/2021/v10i330242

AlAzzawi … Vol 5(1) 2023 : 531-541

541

Krishnan, S. A., Sabu, A. N., Sajan, P. P., & Sreedeep, A. L. (2021). SQL injection detection

using machine learning. REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS,
11(3), 300-310.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

https://doi.org/10.1038/nature14539

Li, Q., Wang, F., Wang, J., & Li, W. (2019). LSTM-based SQL injection detection method for

intelligent transportation system. IEEE Transactions on Vehicular Technology, 68(5),

4182-4191. https://doi.org/ 0.1109/TVT.2019.2893675
Markoulidakis, I., Kopsiaftis, G., Rallis, I., & Georgoulas, I. (2021). Multi-class confusion matrix

reduction method and its application on net promoter score classification problem. In The

14th pervasive technologies related to assistive environments conference (pp. 412-419).

https://doi.org/10.1145/3453892.3461323

Nagasundari, S., & Honnavali, P. B. (2019). SQL injection attack detection using ResNet. In 2019
10th International Conference on Computing, Communication and Networking

Technologies (ICCCNT) (pp. 1-7). IEEE.

https://doi.org/10.1109/ICCCNT45670.2019.8944874

Oudah, M. A., Marhusin, M. F., & Narzullaev, A. (2022). SQL injection detection using

machine learning with different TF-IDF feature extraction approaches. In International

Conference on Information Systems and Intelligent Applications (pp. 707-720). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-031-16865-9_57

Pallam, R., Konda, S. P., Manthripragada, L., & Noone, R. A. (2021). Detection of Web Attacks

using Ensemble Learning. learning, 3(4), 5.

Roy, P., Kumar, R., & Rani, P. (2022). SQL injection attack detection by machine learning

classifier. In 2022 International Conference on Applied Artificial Intelligence and
Computing (ICAAIC) (pp. 394-400). IEEE.

https://doi.org/10.1109/ICAAIC53929.2022.9792964

Sudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D. V. S., & Nastasi, B.

(2022). Systematic review on impact of different irradiance forecasting techniques for solar

energy prediction. Energies, 15(17), 6267. https://doi.org/10.3390/en15176267

Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020). Detection of SQL injection based on
artificial neural network. Knowledge-Based Systems, 190, 105528.

https://doi.org/10.1016/j.knosys.2020.105528

Theissler, A., Thomas, M., Burch, M., & Gerschner, F. (2022). ConfusionVis: Comparative

evaluation and selection of multi-class classifiers based on confusion matrices. Knowledge-

Based Systems, 247, 108651. https://doi.org/10.1016/j.knosys.2022.108651
Yu, L., Luo, S., & Pan, L. (2019, July). Detecting SQL injection attacks based on text analysis.

In 3rd International Conference on Computer Engineering, Information Science &

Application Technology (ICCIA 2019) (pp. 95-101). Atlantis Press.

https://doi.org/10.2991/iccia-19.2019.14

Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y., Zhang, H., & Zhi, G. (2022). Deep Neural Network-

Based SQL Injection Detection Method. Security and Communication Networks, 2022,
4836289. https://doi.org/10.1155/2022/4836289

Zhao, J., Wang, N., Ma, Q., & Cheng, Z. (2019). Classifying malicious URLs using gated

recurrent neural networks. In Innovative Mobile and Internet Services in Ubiquitous

Computing: Proceedings of the 12th International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS-2018) (pp. 385-394). Springer
International Publishing. https://doi.org/10.1007/978-3-319-93554-6_36.

https://doi.org/10.1145/3453892.3461323

	SQL INJECTION DETECTION USING RNN DEEP LEARNING MODEL
	Abdulbasit ALAzzawi 1*
	Department of Computer Science, College of Science, University of Diyala, Iraq1 dr.abdulbasit@uodiyala.edu.iq
	Received : 30 July 2023, Revised: 31 October 2023, Accepted : 04 November 2023
	*Corresponding Author
	ABSTRACT
	SQL injection attacks are a common type of cyber-attack that exploit vulnerabilities in web applications to access databases through malicious SQL queries. These attacks pose a serious threat to the security and integrity of web applications and their...
	Keywords: SQL injection, Recurrent Neural Network (RNN), Deep learning, Classification.
	1. Introduction
	Web applications are often exposed to SQL injection attacks, which are a common and serious type of cyber-attack that allows attackers to access databases through malicious SQL queries. These attacks can compromise the security and integrity of web ap...
	Traditional methods for detecting SQL injection attacks are based on rule-based approaches, which use predefined rules or signatures to identify malicious queries. However, these methods have several limitations, such as low accuracy, high false posit...
	With the advancement of deep learning techniques, there is an opportunity to develop more robust and accurate methods to detect SQL injection attacks (Jothi et al., 2021). Deep learning is a branch of machine learning that uses neural networks to lear...
	In this paper, we present a novel deep learning method for detecting SQL injection attacks using Recurrent Neural Networks (RNNs). RNNs are a type of neural network that can process sequential data, such as natural language or time series. RNNs have b...
	Our proposed method involves training an RNN model on a dataset of both benign and malicious SQL queries. The model is trained to classify queries as either benign or malicious based on their syntax and semantic features. We evaluate our method on a b...
	Our research contributes to the field of web application security by providing a new and effective solution for protecting web applications from SQL injection attacks using deep learning. Our method has both practical and theoretical implications, as ...
	2. Literature Review
	In this section, we review the related works on SQL injection attack detection, focusing on the recent developments and challenges in this field. We use the following criteria to select the relevant literature (Falor et al., 2022), the paper addresses...
	We organize the literature review into three main themes (Falor et al., 2022) machine learning methods for SQL injection attack detection (Kals et al., 2006) deep learning methods for SQL injection attack detection; and (LeCun et al., 2015) challenges...
	Machine learning methods for SQL injection attack detection
	Several studies have proposed or evaluated machine learning methods for SQL injection attack detection, using different algorithms, datasets, and evaluation techniques. For example, Roy et al. (2022) used Naive Bayes (NB) along with other algorithms s...
	Other machine learning algorithms that have been used for SQL injection attack detection include KNN (Falor et al., 2022), DT, RF, ANN (Alarfaj & Khan, 2023), XGB, logistic regression, AdaBoost (Roy et al., 2022), etc. These algorithms have different ...
	Deep learning methods for SQL injection attack detection
	Deep learning methods have been shown to achieve superior results in various domains. Recently, some studies have proposed or evaluated deep learning methods for SQL injection attack detection, using different architectures, datasets, and evaluation t...
	One of the common deep learning architectures used for SQL injection attack detection is convolutional neural network (CNN). For example, Kals et al. (2006) used CNN to detect SQL injection attacks on a dataset with 30,919 records collected from vario...
	Another common deep learning architecture used for SQL injection attack detection is recurrent neural network (RNN). RNNs have been shown to be effective in capturing the temporal dependencies and semantic features of sequential data, making them well...
	Other deep learning architectures that have been used for SQL injection attack detection include TextCNN, Bi-LSTM (Ghozali et al., 2022), etc. These architectures have different advantages and disadvantages in terms of complexity, scalability, interpr...
	Despite the advances and achievements in SQL injection attack detection using machine learning and deep learning methods, there are still some challenges and limitations that need to be addressed and overcome in future research. Some of these challeng...
	Data quality and quantity: The quality and quantity of data are crucial for the success of machine learning and deep learning methods. However, collecting high-quality and large-scale data for SQL injection attack detection is not easy, due to ethical...
	Feature extraction and selection: The choice of features is also important for the performance of machine learning and deep learning methods. However, extracting and selecting relevant features from SQL queries is not trivial, due to the complexity an...
	Evaluation techniques and metrics:
	The evaluation techniques and metrics are also important for the validity and comparability of SQL injection attack detection methods. However, evaluating and comparing different methods may be challenging or misleading due to the lack of standardizat...
	Our research contributes to the field of web application security by providing a new and effective solution for protecting web applications from SQL injection attacks using deep learning. Our method has both practical and theoretical implications, as ... (1)
	3. Research Methods
	3.1 The structure of the proposed system
	proposes a robust system called DSQLIS, which stands for Deep SQL Injection Attack Detection System. DSQLIS aims to achieve accurate and fast classification of SQL injection attacks, thereby safeguarding web applications against unauthorized access or...
	Fig. 1. Structure Of The Proposed DSQLIS
	3.2 Dataset
	The proposed system uses two datasets: SQL injection and web application payload. Each one will be explained in the following subsection.
	3.2.1 SQL Injection Dataset
	The open access SQL injection dataset is obtained from Kaggle (Zhang et al., 2022), comprises 30,919 data items overall, and essentially satisfies the experimental condition. This is the dataset for detecting SQL Injection attack. Label column contain...
	3.2.2 Web Application Payload Dataset
	The proposed system utilizes a second dataset comprised of web application payloads obtained from Kaggle (Pallam et al., 2021), consisting of 4201 samples. This database is specifically designed to test the ability to detect SQL injection attacks and ...
	3.3 Pre-processing Dataset
	Figure below represent pre-processing steps we used in the proposal model
	Fig. 2. Pre-Processing Steps
	The suggested method uses pre-processing input SQL injection attack sentences to generate a set of tokens since it aids in removing any possible noise and extracting useful information from the input words. SQL injection attack statements are typicall...
	3.4 Feature Extraction
	The proposed system used two algorithms to extract features from SQL injection attack tokens.
	3.4.1 Count Vectorizer Feature Extraction
	Count Vectorizer is a useful tool for feature extraction in natural language processing (NLP) tasks. It is simple to represent text data, captures important information, and handles large datasets. In the case of SQL injection data, count Vectorizer i...
	vectorization is to create a vector for each input SQL injection data sample, where the number of columns of the vector correspond to the unique words in the input vocabulary. If a word in the vocabulary appears in the input text, then the correspondi...
	3.4.2 Frequency Inverse Document Frequency (TF-IDF) Feature Extraction
	"Term frequency-inverse document frequency," often known as TF-IDF, is a method for extracting textual features. It is employed to determine a word's or phrase's significance inside a document or group of documents. The TF part of TF-IDF calculates th...
	3.5 Normalization data stage
	The SQL injection attack sentence has useful information that can be extracted using techniques like count vectorization or TF-IDF vectorization. With these techniques, the text is transformed into a feature matrix, where each row denotes a phrase and...
	,y-,𝑖-..= 𝑡𝑎𝑛ℎ(,𝑗=1-𝑘-(,𝜔-𝑗 .,𝑥-𝑖−𝑗+𝑘.+𝜎 .
	3.6 Reshape data stage
	The feature extraction stage produced a set of SQL injection data features in the form of a one-dimensional array as its final result (Hassan et al., 2021). This stage will be using the "Reshape" algorithm to reformat the data in order to arrange it f...
	The length of the results array must be even, not odd, to avoid zero values, as shown in Figure (3), which is an example of the reshaping data.
	Fig. 3. An Example of The Reshape SQL Injection Features Data Using An Input Feature Vector Of Even Length
	Figure (4) shows the process of reshaping an input vector of odd length into a two-dimensional matrix of size m x n.
	Fig. 4. An Example Of The Reshape SQL Injection Features Data Using An Input Feature Vector Of Odd Length
	be the reshape algorithm (4) is employed (length, width). Without modifying the original data in the 1-D array, this technique provides a new needed form.
	3.7 Splitting dataset stage
	In this stage the propose DSQLIS will spitting dataset into 80% training and 20% testing. The training set is used to train the system, while the testing set is used to evaluate the system performance on data without label.
	3.8 Create classification model stage
	The proposed system used two approaches for binary classes classification of the SQL injection attack:
	3.8.1 Classification Model based on Deep Learning approach
	The proposed DSQLIS uses RNN algorithms for SQL injection attack classification. The proposed system uses two types of Recurrent Neural Network (RNN) models to classify SQL injection queries - the “Long Short-Term Memory” (LSTM) and “Gated Recurrent U...
	LSTM is utilizing in classification SQL injection attacks because it can effectively process sequential data and identify patterns in the sequence of characters that are indicative of a SQL injection attack.
	The LSTM model includes several layers that work together to learn and classify sequences of data (Alghawazi et al., 2022). Algorithm (5) presents the procedure of the LSTM for SQL injection attack classification and the output is MLST model parameter...
	The given steps in the algorithm (5) outline the process of creating a deep learning model using a LSTM. The first step involves setting the initial parameters such as the output dimension, activation function, optimizer, and number of hidden units. I...
	Fig. 5. The Architecture Of The LSTM
	For modeling tasks requiring sequences, recurrent neural networks (RNNs) of the GRU type are frequently utilized. GRU is used to classify SQL injection attacks because it can model how the characters in the input data depend on each other in terms of ...
	Algorithm (6) presents the procedure of the GRU for SQL injection attack classification and the output is GRU model parameters to save in H5 file format.
	The given steps in the algorithm (6) outline the process of creating a deep learning model using a GRU (Gated Recurrent Unit) architecture. In step 1, the initial parameters are set, including the output dimension, activation function, optimizer, and ...
	In step 2, an embedding layer is created with the input dimension and output dimension specified. Following that, two GRU layers are added - the first layer has 256 hidden units and the return sequences parameter is set to True, indicating that the ou...
	In step 6, a dropout layer is added with 512 units and the specified activation function. Finally, a dense output layer with 2 units and the sigmoid activation function is created to find the binary classification of the input SQL injection sequence. ...
	Fig 6. Shows How The GRU Is Structured
	3.9 Evaluation classification model
	It is essential to evaluate each model independently based on different metrics after creating the classification model in order to evaluate its performance. The accuracy metric is determined using equation (2), the precision meter using equation (3),...
	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=,𝑇𝑃+𝑇𝑁-𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁.
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=,𝑇𝑃-𝑇𝑃+𝐹𝑃.
	𝑅𝑒𝑐𝑎𝑙𝑙=,𝑇𝑃+𝑇𝑁-𝑇𝑃+𝐹𝑁.
	𝐹1 𝑆𝑐𝑜𝑟𝑒=2×,𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛-(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛).
	3.10 Save best classification model stage
	Saving a classification model is an essential stage in propose DSQLIS, as it allows the model to be deployed and used in real environments. The parameters of a best performance model, including the model weights, architecture, and optimizer, are criti...
	3.11 Apply best classification model in real environment
	At this stage, the proposed system undergoes a case study to ensure its strong and reliable performance in a real-world environment. To achieve this, the system is evaluated using the best classification model saved in the H5 file format, which is the...
	The classification model used in this stage is selected for its higher accuracy, ensuring that the system's performance is optimal. The output of the classification model is a binary classification of whether a given payload is safe or represents a SQ...
	Figure 5 shows our LSTM model for SQL injection attack detection. It has these layers:
	 Embedding: Converts words to vectors of size 100.
	 Bidirectional: Applies a bidirectional LSTM with 150 units to capture dependencies in both directions.
	 Dropout: Drops out some units with 0.2 probability to prevent overfitting.
	 LSTM: Applies another LSTM with 100 units to learn temporal and semantic features.
	 Dropout: Drops out some units with 0.2 probability to prevent overfitting. (1)
	 Dense: Applies a fully connected layer with 512 units and a ReLU activation to transform and reduce the input vector.
	 Output: Applies a fully connected layer with 2 units and a sigmoid activation to produce a binary output.
	We chose this model because it can process sequential data and identify SQL injection patterns. We used two datasets from Kaggle (Zhang et al., 2022; Pallam et al., 2021) to train and test our model. We used word2vec to extract semantic features and c...
	4. Results and Discussions
	Preventing SQL injection attacks is vital for securing and maintaining reliable database systems. This involves accurately identifying requests in real-time and non-real-time scenarios using efficient classification and processing methods to detect su...
	The proposed system effectively analyzed data in real-time and non-real-time environments, distinguishing normal and attack words. It employed Count vectorization and TF-IDF feature extraction algorithms to identify critical words. a version of RNN-LS...
	Table 1 - Results of The Process of Cleaning The Samples Entered From The Database
	4.1 Results of the Feature Extraction
	The proposed system employed two feature extraction algorithms, namely count vectorization and TF-IDF vectorization, to identify the most significant words that directly indicate the occurrence of safe or SQL injection attacks. Table (2) illustrates s...
	Table 2 - Samples Of SQL Injection Attack Feature Based On Count Vectorization Algorithm
	Tables (3) and (4) shows examples of features extracted by the TF-IDF algorithm for SQL injection. In these tables, each column represents a feature name and each row represents the corresponding float value of the TF-IDF feature.
	Table 3 - Results Of Examples of The IDF Weights For Each Selected Words
	The IDF weight for a particular word is calculated using Equation (7). The resulting value is used as a weight for that word in all requests in the dataset. For example, if the IDF weight for the word "case" is 3.739894949, it means that the word "cas...
	𝑑𝑓,𝑤.=,log-,,𝑛-,𝑑𝑓-𝑖....
	Table 4 - Samples of SQL Injection Attack Feature based on TF-IDF Algorithm
	4.2 Results of the sql injection attack classification
	The proposed system utilizes RNN (LSTM and GRU) algorithms are used for deep learning. To train and validate the performance of the classification algorithms, 70% of the input is broken down into training data, 10% into validation data, and 20% into t...
	1. The count vectorization case studies include four different parameter configurations for the Count Vectorizer algorithm.
	 In Case 1, the parameters min_df=2 and max_df=0.7 are used to specify the minimum and maximum document frequency for each token to be included in the vocabulary.
	 In Case 2, the parameter ngram_range=(1,1) is used, indicating that each word is taken individually.
	 In Case 3, the parameter ngram_range=(2,2) is used, indicating that each two-word combination is taken.
	 Finally, in Case 4, the parameter ngram_range=(3,3) is used, indicating that each three-word combination is taken.
	2. The TF-IDF case studies include two different parameter configurations for the TF-IDF Vectorizer algorithm.
	 In Case 5, the frequency of each word in a document and the entire corpus is calculated to determine the importance of each word.
	 In Case 6, the parameters smooth_idf=True and sublinear_tf=True are used to smooth the inverse-document-frequency (idf) weights and apply a sublinear function to the term frequency (tf) weights.
	Table (5) shows the summary RNN-LSTM algorithm and the number of trained parameters as well as the overall number of parameters in the network.
	Table 5 - Model Summary of The Proposed RNN-LSTM Networks
	Figure (7) illustrated the confusion matrix for each case study of the feature extraction based on RNN-LSTM classification algorithm.
	Fig 7. Confusion Matrix for Each Cases Study in the Proposed System based on RNN-LSTM Algorithm
	The proposed system's performance in all case studies is depicted in Figure (7), which shows good results. Among the cases, Case 6 stands out with the highest system performance achieved using TF-IDF feature extraction, with TP of 170, TN of 587, FP o...
	Table (6) provides a comprehensive overview of the accuracy metrics results of the DSQLIAS system for all case studies utilizing both count vectorization and TF-IDF feature extraction algorithms based on the RNN-LSTM algorithm with a number of Epochs ...
	Table 6 - Values of Accuracy, Sensitivity, Specificity, and Precision, as well as F1_Score, for the DSQLIAS based on the RNN-LSTM Algorithm
	Table (6) proved the best performance of the proposed system obtains with case 6 parameters and the TF-IDF feature extraction algorithm, where an "accuracy" value of 0.90119, a "sensitivity" of 0.6746, a "specificity" of 0.9983, a "precision" of 0.912...
	The RNN-LSTM-based DSQLIAS system's results are summarized in Figure (7) and Table (6). These results demonstrated that the DSQLIAS system obtained the best results when applying the TF-IDF technique for feature extraction in Case 6 and the count vect...
	Table (7) shows the summary RNN-GRU algorithm and the number of trained parameters as well as the number of trained parameters in the network.
	Table 7 - Model Summary of the Proposed RNN-GRU Networks
	Figure (8) illustrated the confusion matrix for each case study of the feature extraction based on RNN-GRU classification algorithm.
	Fig 8. Confusion Matrix For Each Cases Study In The Proposed System Based On RNN-GRU Algorithm
	We tested our hypotheses that our system can detect SQL injection attacks better than rule-based methods using deep learning models (RNN, LSTM, and GRU). We used two datasets from Kaggle (Zhang et al., 2022; Pallam et al., 2021), word2vec features, an...
	Our findings agreed with previous studies that used deep learning for SQL injection detection. Our system can protect web applications from SQL injection attacks in real-time and non-real-time scenarios.
	Our limitations were data quality and quantity, model complexity and interpretability, and evaluation techniques and metrics. Future work should address these issues to improve our system.
	4.3 Discussion the results
	The proposed system's performance in all case studies is depicted in Figure (8), which shows excellent results. Among the cases, Case 6 stands out with the highest system performance achieved using TF-IDF feature extraction, with TP of 252, TN of 568,...
	Table 8 - Values of Accuracy, Sensitivity, Specificity, and Precision, as well as F1_Score, for the DSQLIAS based on the RNN-GRU Algorithm
	Table (8) proved the best performance of the proposed system obtains with case 1 parameters and the count vectorization feature extraction algorithm, where an “accuracy” value of 0.84871, a “sensitivity” of 0.49825, a “specificity” of 0.99748, a “prec...
	Table (9) presents a comparison between the performance of the propose system based on count vectorization (Case 1) and TF-IDF (case 6) feature extraction algorithms and accuracy metrics.
	Table 9 - Comparison Performance of DSQLIAS
	5. Conclusion
	This paper has presented a novel system for detecting and classifying SQL injection attacks using RNN deep learning models. The system, named DSQLIAS, uses natural language processing techniques to extract key features from SQL queries that indicate t...
	6. Future works
	There are several opportunities for future research in RNN-based SQL injection detection (Alghawazi et al., 2022). For example, researchers may explore methods for improving the accuracy of existing models, integrating multiple detection techniques, a...
	References
	Alarfaj, F. K., & Khan, N. A. (2023). Enhancing the Performance of SQL Injection Attack Detection through Probabilistic Neural Networks. Applied Sciences, 13(7), 4365. https://doi.org/10.3390/app13074365
	Alghawazi, M., Alghazzawi, D., & Alarifi, S. (2022). Detection of SQL injection attack using machine learning techniques: a systematic literature review. Journal of Cybersecurity and Privacy, 2(4), 764-777. https://doi.org/10.3390/jcp2040039
	Alwan, Z. S., & Younis, M. F. (2017). Detection and prevention of SQL injection attack: a survey. International Journal of Computer Science and Mobile Computing, 6(8), 5-17.
	Aminanto, M. E., Purbomukti, I. R., Chandra, H., & Kim, K. (2022). Two-Dimensional Projection-Based Wireless Intrusion Classification Using Lightweight EfficientNet. Computers, Materials & Continua, 72(3), 5301. https://doi.org/10.32604/cmc.2022.026749
	Arock, M. (2021). Efficient detection of SQL injection attack (SQLIA) Using pattern-based neural network model. In 2021 International conference on computing, communication, and intelligent systems (ICCCIS) (pp. 343-347). IEEE. https://doi.org/10.1109...
	ArunKumar, K. E., Kalaga, D. V., Kumar, C. M. S., Kawaji, M., & Brenza, T. M. (2021). Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells. Chaos, Solitons ...
	Bhateja, N., Sikka, S., & Malhotra, A. (2021). A review of SQL injection attack and various detection approaches. Smart and Sustainable Intelligent Systems, 481-489, https://doi.org/10.1002/9781119752134.ch34
	Chen, D., Yan, Q., Wu, C., & Zhao, J. (2021). SQL injection attack detection and prevention techniques using deep learning. In Journal of Physics: Conference Series (Vol. 1757, No. 1, p. 012055). IOP Publishing. https://doi.org/10.1088/1742-6596/1757/...
	Chen, Z., & Guo, M. (2018). Research on SQL injection detection technology based on SVM. In MATEC web of conferences (Vol. 173, p. 01004). EDP Sciences. https://doi.org/10.1051/matecconf/201817301004
	Demilie, W. B., & Deriba, F. G. (2022). Detection and prevention of SQLI attacks and developing compressive framework using machine learning and hybrid techniques. Journal of Big Data, 9(1), 124. https://doi.org/10.1186/s40537-022-00678-0
	Falor, A., Hirani, M., Vedant, H., Mehta, P., & Krishnan, D. (2022). A deep learning approach for detection of SQL injection attacks using convolutional neural networks. In Proceedings of Data Analytics and Management: ICDAM 2021, Volume 2 (pp. 293-30...
	Farhan, A. H., & Hasan, R. F. (2023). Detection SQL Injection Attacks Against Web Application by Using K-Nearest Neighbors with Principal Component Analysis. In Proceedings of Data Analytics and Management: ICDAM 2022 (pp. 631-642). Singapore: Springe...
	Ghozali, I., Asy'ari, M. F., Triarjo, S., Ramadhani, H. M., Studiawan, H., & Shiddiqi, A. M. (2022). A Novel SQL Injection Detection Using Bi-LSTM and TF-IDF. In 2022 7th International Conference on Information and Network Technologies (ICINT) (pp. 16...
	Hassan, M. M., Ahmad, R. B., & Ghosh, T. (2021). SQL injection vulnerability detection using deep learning: a feature-based approach. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 9(3), 702-718. http://dx.doi.org/10.52549/.v9i3...
	Jemal, I., Cheikhrouhou, O., Hamam, H., & Mahfoudhi, A. (2020). Sql injection attack detection and prevention techniques using machine learning. International Journal of Applied Engineering Research, 15(6), 569-580.
	Jothi, K. R., Pandey, N., Beriwal, P., & Amarajan, A. (2021, March). An efficient SQL injection detection system using deep learning. In 2021 International conference on computational intelligence and knowledge economy (ICCIKE) (pp. 442-445). IEEE. ht...
	Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006). Secubat: a web vulnerability scanner. In Proceedings of the 15th international conference on World Wide Web (pp. 247-256). https://doi.org/10.1145/1135777.1135817
	Kareem, F. Q., Ameen, S. Y., Salih, A. A., Ahmed, D. M., Kak, S. F., Yasin, H. M., ... & Omar, N. (2021). SQL injection attacks prevention system technology. Asian Journal of Research in Computer Science, 10(3), 13-32. https://doi.org/10.9734/AJRCOS/2...
	Krishnan, S. A., Sabu, A. N., Sajan, P. P., & Sreedeep, A. L. (2021). SQL injection detection using machine learning. REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 11(3), 300-310.
	LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
	Li, Q., Wang, F., Wang, J., & Li, W. (2019). LSTM-based SQL injection detection method for intelligent transportation system. IEEE Transactions on Vehicular Technology, 68(5), 4182-4191. https://doi.org/ 0.1109/TVT.2019.2893675
	Markoulidakis, I., Kopsiaftis, G., Rallis, I., & Georgoulas, I. (2021). Multi-class confusion matrix reduction method and its application on net promoter score classification problem. In The 14th pervasive technologies related to assistive environment...
	Nagasundari, S., & Honnavali, P. B. (2019). SQL injection attack detection using ResNet. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE. https://doi.org/10.1109/ICCCNT45670.2019.8...
	Oudah, M. A., Marhusin, M. F., & Narzullaev, A. (2022). SQL injection detection using machine learning with different TF-IDF feature extraction approaches. In International Conference on Information Systems and Intelligent Applications (pp. 707-720). ...
	Pallam, R., Konda, S. P., Manthripragada, L., & Noone, R. A. (2021). Detection of Web Attacks using Ensemble Learning. learning, 3(4), 5.
	Roy, P., Kumar, R., & Rani, P. (2022). SQL injection attack detection by machine learning classifier. In 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 394-400). IEEE. https://doi.org/10.1109/ICAAIC53929.2...
	Sudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D. V. S., & Nastasi, B. (2022). Systematic review on impact of different irradiance forecasting techniques for solar energy prediction. Energies, 15(17), 6267. https://doi.org/10.3390/en...
	Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020). Detection of SQL injection based on artificial neural network. Knowledge-Based Systems, 190, 105528. https://doi.org/10.1016/j.knosys.2020.105528
	Theissler, A., Thomas, M., Burch, M., & Gerschner, F. (2022). ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices. Knowledge-Based Systems, 247, 108651. https://doi.org/10.1016/j.knosys.2022.108651
	Yu, L., Luo, S., & Pan, L. (2019, July). Detecting SQL injection attacks based on text analysis. In 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019) (pp. 95-101). Atlantis Press. https://d...
	Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y., Zhang, H., & Zhi, G. (2022). Deep Neural Network-Based SQL Injection Detection Method. Security and Communication Networks, 2022, 4836289. https://doi.org/10.1155/2022/4836289
	Zhao, J., Wang, N., Ma, Q., & Cheng, Z. (2019). Classifying malicious URLs using gated recurrent neural networks. In Innovative Mobile and Internet Services in Ubiquitous Computing: Proceedings of the 12th International Conference on Innovative Mobile...

